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1. Introduction 

Studies of electron-hole recombination in semiconductors are mainly stimulated by extensive 
use of these materials for manufacturing of detectors and as sources of radiation of different 
wavelength regions. This statement holds also for narrow gap semiconductors, different kinds of 
which are widely used in infrared devices. 

Simultaneously, investigation of interband carrier transitions, recombination and impact ioniz- 
ation, form an important part of the physics of hot electrons in narrow gap semiconductors. 
Indeed, because the gap is small and the electron mobility is high, even a relatively low electric field 
may heat carriers up to energies of the order of sg, the gap width. For example, in extremely narrow 
gap Bii -,Sb, alloys, a field of the order of lOV/cm is sufficient [28]. High-energy carriers initiate 
interband impact ionization, i.e. electron transitions from the valence band to the conduction band 
which result in interband breakdown. In the post-breakdown regime, electron and hole concentra- 
tions and, in some cases, even the shape of the carrier distribution functions [lo23 are determined 
by the balance of generation and recombination processes in non-equilibrium conditions. One can 
say that it is the connection between the carrier heating process and the interband transitions that 
distinguishes the hot electron problem in narrow gap semiconductors from a similar problem in 
more traditional materials. Hence the study of interband transitions is important for many aspects 
of the physics of non-equilibrium phenomena in narrow gap semiconductors. 

Recombination mechanisms in narrow gap semiconductors were, and remain, extensively 
studied (see references below). We will concentrate here mainly on the results obtained during the 
last fifteen years. A review of the earlier works can be found in [983. 

The main processes that lead to a decrease in the excess non-equilibrium carrier concentration in 
narrow gap materials are generally the same as that in other semiconductors. They are Auger 
recombination, radiative transitions and Shockley-Read recombination, i.e. carrier capture by the 
local levels that are connected with impurities and lattice defects. 

As a rule, Auger transitions manifest themselves in narrow gap materials in the temper- 
ature interval of intrinsic conductivity, or in the case of high doping. The higher the carrier density 
and temperature and the smaller the gap, the higher is the Auger transition rate. In materials 
having a relatively wider gap, radiative recombination may play a noticeable role. At low 
temperatures when electron energy diminishes and intrinsic carriers are frozen out, the lifetimes of 
the non-equilibrium electrons and holes are often determined by the Shockley-Read recombina- 
tion. 

Regarding the theory of these mechanisms, Auger recombination in narrow gap semiconductors 
has been studied in more detail. It has interesting specific features in both the main groups of 
narrow gap materials, namely, in those with Kane band structure such as Hg, -,Cd,Te and also in 
the many-valley ones (Pb,_,Sn,Te, Bii_,Sb,, etc.). On the contrary, the theory of impurity 
recombination in narrow gap semiconductors has so far attracted considerably less attention. 

Nowadays there is an increased interest in artificial semiconductor structures, quantum wells 
and wires, superlattices, and so on. These structures, prepared from narrow gap materials, are very 
promising for infrared device fabrication. We will discuss the peculiarities of the interband 
transition processes in these structures. 

We will also present existing research material that concerns the processes of impact ionization 
in narrow gap semiconductors. 
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For both recombination and generation processes, we will consider existing theoretical ap- 
proaches to the transition rate calculation as well as important experimental results for the main 
types of narrow gap materials and their artificial structures. According to our research interests, we 
will pay attention to the theoretical aspects; readers interested primarily in the details of the 
experimental methods or in the technological problems can find the relevant information in the 
recent review articles [86,119], respectively. 

We will first discuss the general features of some important interband transition mechanisms and 
then turn to the peculiarities of these processes in the main classes of narrow gap materials. In this 
review, we will discuss Hg, _.Cd,Te, and many-valley narrow gap semiconductors will be con- 
sidered in a following review. 

2. Auger transitions 

2.1. Auger recombination 

Initially, the Auger process was introduced in atomic physics by Auger in 1925 as a non-radiative 
relaxation channel of an electron that has been excited from an inner atomic shell to an outer level. 
In this mechanism, one of the electrons from the outer shells drops down to the vacant position and 
the transition energy is transferred to another electron that is excited to the continuous spectrum. 
As a result, the atom becomes ionized. 

In semiconductor physics, Auger recombination is also connected with electron-electron inter- 
action and energy transfer to a current carrier. As the carriers can belong to different bands, and in 
the case of degenerate bands also to different branches and different extrema of the bands, there are 
different kinds of Auger transitions. For example, in Figs. 1 and 2 two important transitions are 
shown, the so-called eeh and ehh processes. They are often referred to as the Auger 1 and Auger 7 
transitions, respectively, according to an early classification [14]. In the eeh process, the recombi- 
nation energy is transferred to an electron, so that two electrons and a hole take part in the 
transition (in the initial state). In the ehh transition, one electron and two holes are present before 
the recombination and a hole takes the transition energy. In both cases the electron-hole pair 
disappears after the transition, which is the recombination itself, and one high-energy carrier, either 
an electron or a hole, remains. 

The Auger transitions are very important in narrow gap materials because the efficiency of this 
recombination channel in a semiconductor sharply increases as cg diminishes. In the simplest case 
of the classical carrier statistics, the Auger recombination rate R is proportional to the cube of the 
carrier density, because three particles have to collide for the Auger transition, the electron and the 
hole that recombine and an additional carrier which takes the recombination energy. Then for an 
intrinsic semiconductor 

where ni is the intrinsic electron concentration. As Yli - exp( -&,/2T), one obtains 

R - exp(-3&,/2T). 
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Fig. 1. Eeh Auger recombination process (Auger 1 transition according to the classification in Ref. [14]). The transition 
energy is transferred to an electron in the conduction band. The bands C, H and L are the conduction, heavy-hole and 
light hole bands, respectively [lS]. 

Fig. 2. Ehh recombination process (Auger 7 transition according to the classification in Ref. [ 141). The transition energy 
is transferred to a hole in the valence band [15]. 

On the other hand, the radiative transition rate is proportional to the product of the electron and 
hole concentrations np - nf - exp( -sg/T) and the rate of the Shockley-Read recombination is 
linear in the carrier density n N ni - exp( -&,/2T). So the Auger rate increases most rapidly as 
.sg diminishes in comparison with the rates of the other recombination mechanisms and hence 
Auger recombination often dominates in narrow gap semiconductors; the smaller the energy gap 
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and the higher the carrier density, the more effective is this channel. The limiting value of the Auger 
lifetime that can be approached as sg + 0 is rather high, being of order of the intraband elec- 
tron-electron free time because the Auger process is essentially an interband carrier-carrier 
collision and there is no principal physical difference between inter- and intraband electron 
collisions if sg is less than the mean carrier energy. 

In addition, the Auger process is an intrinsic one and hence it is always present in the material. 
We will now discuss it in detail. 

The probability of the Auger transition can be easily written using the perturbation method of 
quantum mechanics, which was first performed in the pioneering work of Beattie and Landsberg 
[16]. For definiteness, let us consider an eeh process as shown in Fig. 1. Ehh transitions can be 
handled in a similar way but the particle that gets the energy is not an electron but a hole in this 
transition. Treating the Coulomb intercarrier interaction as a perturbation and describing the 
carrier wave functions by Bloch waves, one easily obtains the following expression for the 
probability of two particle transition from states 1 and 2 to states 1’ and 2’: 

W(kl,k2 -+ &,&) 

-2 
47ce2 47ce2 

K(k1 -k;I Klkl -&I 
wl,k2,k;,k;) 1 

xiqk1 +kZ-k; -k;)d(E1+&2-&; -&i). (1) 

Here ki is the carrier momentum in the state i; Ei = E(ki) is the corresponding energy in the band 
that contains the state i; the energies of all the states are calculated from one and the same origin; 
IC is the dielectric constant; Zinter, Zintra and D are the so-called overlap integrals that are essentially 
the averaged scalar products of the Bloch amplitudes of the electron wave functions (see below). 
Typically, both branches are equally populated in each band. This means that one is interested, 
actually, only in the value of the transition probability averaged over the branches of all the bands 
the carriers from which take part in the transition. We denote this averaging in Eq. (1) by the bar 
above the square of the matrix element. 

The expression for the matrix element used in Eq. (1) can be obtained in the following way. Prior 
to the transition the two-electron wave function has the form 

$kl,r2) = $ (~k,,j,(rl)~k,,j,(r2) - ~k,,j,(r2)~k,,j,(rl)) T 

J 

where the subscripts j, and j, denote the branch of the spectrum 
carrier (each band consists of two branches because of Kramers 
$‘(rl,r2), after the collision, has a similar structure. 

(2) 

that contains the corresponding 
degeneracy). The wave function 



A. V. Dmitriev, M. Mocker J Physics Reports 257 (1995) 85-131 91 

Taking Eq. (2) into account, one obtains the following expression for the average of the squared 
transition matrix element 

X I~k,,j,(rl)~k,,j,(r2) - ~~k,,j,(r2)~k,,j,(rl)) 2 . (3) 

The summation here is over the branches of all the bands involved in the process so that eachj runs 
over two values. 

It is convenient to use the Luttinger-Kohn basis and hence to substitute the following expres- 
sions for the electron wave functions 

$k,,j,(r) = l&,j,) e 
i.%,.r 

(4) 

where 1 kl, j,) is the vector of the expansion coefficients which represents the Bloch amplitude of the 
one-electron wave function in the Luttinger-Kohn basis. 

After straightforward calculations one obtains, finally, 

<&,&I .,,pl r2, I&,&) I2 

(5) 

where 

(6) 

is the density matrix (see, for example, Ref. [52]) describing the (mixed) electron state in a given 
band with a given momentum kl, which contains the (pure) states from both branches of the band 
in equal portions. The sum is just over these branches. For a given momentum, density matrices are 
different in different bands but we omit the band indices in Eqs. (5) and (6) to simplify the notation 
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because it is always clear to what band the electron state under consideration belongs in the 
transition. Sometimes the density matrix doubled is called the projection operator on the state kl in 
the corresponding band [SS, 571. 

As ki and k2 enter symmetrically in Eq. (l), one can combine the first two terms in Eq. (5) to 
obtain 

Iinter = Sp{dhMki)) > 

zintra = Sp{&Mk;)) 3 

D = Sp(p(k,)p(k;)p(kz)p(k;)) . 

(7) 

The density matrices and hence the overlap integrals can be easily found for the main models of 
the band structure in narrow gap semiconductors, because only a small limited number of bands is 
taken into account in them. This is a specific feature of narrow gap materials where the dispersion 
laws are formed mainly by the interaction between those several states that are separated by the 
narrow energy gap while the influence of the farther states can be neglected or taken into account 
implicitly. Correspondingly, the traces of the products of the density matrices in Eq. (5) are 
restricted to the summation over the same finite set of states. 

If the valence band is degenerate as in Hgi _,Cd,Te, different Auger transitions are possible 
(see Fig. 4), and different interband overlap integrals correspond to them depending upon the 
spectrum branches between which the carrier that takes the energy performs the transition. 
Expressions for different overlap integrals as well as the method of their calculation can be found 
in the appendix. 

The calculations presented above show that the structure of the carrier wave functions reflects 
significantly in the structure of the transition probability W. First, the two terms in braces in the 
third line of Eq. (1) come from the direct (Coulomb) and exchange transitions that appear due to 
the antisymmetry condition for the two-electron wave functions (see Eq. (2)). Second, the exponen- 
tial factors eik.r in the one-particle wave functions result in the momentum conservation law. And 
third, the overlap integrals Iinter and Zintra are the matrix elements squared of the Bloch amplitudes 
of the one-particle wave functions, averaged over band indices as described above. These matrix 
elements are taken between the states of the recombining pair for lrnter, and between the states of 
the particle that gets the energy, before and after the transition, for lintrae In D, the same matrix 
elements are combined in a similar but slightly more complicated way. Umklapp processes were 
neglected in Eq. (1). 

To find the total recombination rate, one should integrate the transition probability W over all 
initial and final states 1, l’, 2 and 2’ of the particles, including appropriate statistical factors to take 
into account also the probability that the initial states are filled by electrons and the final ones are 
empty: 

2n 

R = h s 

8 
-dk,dk,dk;dk;[2(K(,4~~k;))ili.~~~(k~,k~)~i~~~~(kl-P;)linlm(klrk~) 
(27ch)9 

-2 
4ne2 4ne2 

lclkl -k;( Klkl -k;I 
Nk,,k,,k;,k;) 1 Pd(zk)6(CE) 7 (8) 
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pr =f1.f2(1 -mu -h? * (9) 

Here P, is the so-called statistical factor, fi Ef(ki) is the electron distribution function, i.e. the 
probability that the state i is occupied by an electron, so that (1 -f) is the distribution function for 
holes. 

The multi-dimensional integral (8) is, in general, extremely difficult to calculate. Indeed, even 
after integration over three momentum components with the help of the momentum conservation 
law, the remaining integration is still over the eight-dimensional hyper-surface that is given by the 
energy conservation condition in the nine-dimensional k-space. Symmetry arguments may further 
reduce the number of variables, but the resulting dimension of the integral remains high, being 
typically equal to 5 or 6. In a general case, when carrier distributions are degenerate and the mean 
electron energies are comparable to sgr there is no other method for the evaluation of the rate 
integral except for direct numerical calculations [llO, 44,80,88] that are rather complicated and 
very time-consuming. 

There is, however, an important limiting case when the Auger rate calculations can be performed 
analytically [16). Indeed, let us assume that the carrier distributions are non-degenerate and that 
the temperature is low enough, 

T 6 cg . 

Then the statistical factor takes the form 

(10) 

(11) 

where the energy conservation law has been used for the transformations. Here [i is the 
(quasi-)Fermi level in the band that contains the state i. 

One can easily see from Eqs. (11) and (8) that the major contribution to the rate comes from the 
transitions for which the value of E; is close to its minimum. The minimum value of E;, E; min, is 
called the threshold value, and the corresponding transition is called the threshold of the Auger 
process for a reason that will be clear soon. If for a transition the corresponding E; value exceeds 
the minimum by more than a few T then its contribution to the rate integral is negligible. Hence, if 
in the region of the k-space that corresponds to the transitions with E; close to E; min the matrix 
elements and the overlap integrals do not change significantly, one can substitute for them their 
values taken at the threshold thus simplifying the integral radically. 

For low temperatures T 4 cg, one can always do this procedure with the Fourier transform of 
the Coulomb electron-electron interaction, because the momentum transfer (ki - ki 1 = IkZ - kil 

that enters the matrix element is of the order of ,/G where m is the effective mass in the band 
to which the high energy particle belongs. As E ; min evidently cannot be less than .sg, the small 
variation of E; of the order of T will not change the momentum transfer significantly and hence the 
transform as a whole. The same usually also holds for the intraband overlap integral lintra. 

The situation may be more complicated, however, for the interband overlap integral [54,55, IS] 
because for some types of band spectrum the threshold value of the integral equals zero or is very 
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small. Iinter may also depend on the angle between k1 and k; which is not necessarily strictly fixed 
by the condition E; - E; min 4 sg. In these cases one certainly cannot substitute a constant value for 
Iinter and should either use the precise original expression for it or some suitable expansion into the 
momentum series near the threshold [54,55,18]. 

To demonstrate the general idea of the approach of Beattie and Landsberg, let us assume here for 
simplicity that one can substitute the threshold value also for linter. We remind the reader, however, 
that we do it for the purpose of illustration only and that this step is incorrect for the main classes of 
narrow-band semiconductors. We continue to consider the eeh process so that the particles 1,2 and 
2’ are within the conductivity band with the band dispersion law s,(k), and the particle 1’ is in the 
valence band and its dispersion relation is s,(k). We treat all energies as energies of electrons in the 
corresponding bands and measure them from a common origin. 

Then one immediately obtains from Eq. (8) 

R = const. exp dk dq dk; exp ( c,,;,) 

= const.exp(2rcF “) ldk;exp( -T) 

x dk dq ~(E,(/c;) - s,(k; - q) 

+ E”(k - q/2) - EC@ + q/2)) 9 (12) 

where new variables k and q were introduced instead of ki, k; and k2 to explicitly take into account 
the momentum conservation. 

As T < cg, one can use parabolic approximation for the dispersion laws when calculating the 
concentrations and hence make use of the expressions 

n = N,*(T)exp 

p = N,*(T)exp (13) 

where 

N,* = 2[m, T/27rh2]3’2 , N,? = 2[M,,T/2d1~]~‘~ (14) 

are the effective numbers of states in the bands, m, and Mh being the electron and hole effective 
masses, respectively. Then one comes to the equality 

exp 
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where we have taken into account that ii,, the Fermi energy of the holes, and [,, that of the 
electrons in the valence band, differ by the sign, so that ii, = --iv. Now it is possible to re-write 
Eq. (12) in a more familiar form with the carrier density dependence shown explicitly: 

s,(kl) - cc min - &g - 
T 

x 
s 

dkdq&(k;) - E,(k; - q) + c,(k - q/2) - c,(k + q/2)) . (15) 

It is worth noting that R is always proportional to the cube of the particle density in the case of 
classical (Boltzmann) statistics because three particle 1, 2 and 1’ have to collide for the Auger 
transition. R is proportional to n2p for eeh process and to np2 for the ehh one, so ehh transitions 
are usually more important in n-type materials and ehh ones in p-type semiconductors. Density 
dependence may be different, however, if the carriers are degenerate L-54,55,62,18,132]. 

It is convenient to calculate first the inner integral in Eq. (15). As was already mentioned, for 
T < cg the energies of the particles 1,l’ and 2, which are of the order of T, are low enough to justify 
the use of the parabolic approximation for their dispersion relations. Then the argument of the 
b-function reduces to a bilinear function of q and k, which can be transformed to a diagonal form by 
a linear coordinate transformation in momentum space. After this transformation, the integration 
can be performed easily in the spherical coordinates [79]. Hence one obtains a function of k; as 
a value of the inner integral in Eq. (15); let this function be Z(k;). It gives in fact the phase volume 
allowed for all possible transitions for a given value of k;. Of course, 2 depends on the direction of 
k; only if the carrier dispersion law is anisotropic. Evidently, 2 has a non-zero value only if E; is 
greater than E; min, and usually Z becomes proportional to some positive power y of E; - E; min after 
averaging over different k; directions on the surface c(k$) = const. 

Hence one now obtains 

R = n2 p &CyyiF exp s; min - &c min - &g a, - T 
>S 

d& P&;) 

4 ml” 

8; min - EC min - Eg - 
T 

dap,(s$ min + s)exp 

and, finally, 

R = CAn2p, 

(16) 

CA = const.(zyexp( -$) , 

E, = E; min - EC min - Eg . 

(17) 

(18) 
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CA is called the Auger coepcient, and E, is the activation energy of the process. It is evident from 
Eq. (17) that the Auger coefficient does not depend upon carrier concentrations (we considered 
classical carrier statistics here; the results may be different in the degenerate case, see Section 3.2.1). 

In deriving Eq. (17) from Eq. (16), we used 

P,(E; min + E) Z P,(E; min) = const. 

because E - T < E; min - E,. 
Calculation of the outer integral over k; in Eq. (16) is straightforward and gives some positive 

power of the temperature as a result. Actually, the interband overlap integral, which we have 
omitted here for simplicity, also contributes to this power. As (Nd)2NV in the denominator of 
Eq. (16) is in turn proportional to T 9/2 the resulting power of the temperature, y, in the 
pre-exponential factor may be either positive or negative. In any case, the main part of the low 
temperature dependence of the Auger rate is exponential with the activation energy E, equal to the 
difference between the threshold energy of the high-energy particle calculated from the correspond- 
ing band edge, and E,. So it is important to have a method to calculate the activation energy. 

To do this, it is more convenient to look at the reverse of the Auger recombination process, i.e. 
the process of impact ionization produced by a high energy particle 2’ in its collision with an 
electron 1’ in the valence band. As a result, two low-energy particles 2 and 1 appear, such that the 
electron undergoes an interband transition from state 1’ to 1. Evidently, the energy and momentum 
conservation laws are identical for the recombination and ionization transitions, and hence the 
E; min values coincide for them. As a result, one can calculate E ; min as the minimum energy a carrier 
requires for impact ionization. 

One can also consider ionization as a decay of one initial particle 2’ into three particles, namely 
two electrons in states 1 and 2 and a hole in state 1’ in the valence band (the eeh process). Hence we 
have here the standard problem of particle physics, namely particle decay into a set of other 
particles, and E ; min is indeed the threshold energy of this process, i.e. the minimal energy for particle 
decay. As the decay we consider here is just the impact ionization, its threshold energy is called the 
ionization threshold and denoted sI = E; min. 

The conditions that determine the threshold are well known (see, for example, Ref. [87]). They 
reduce to the equality of velocities of all particles that are born as a result of the decay, and together 
with the conservation laws they enable one to find the momenta of all the particles participating in 
this threshold transition and hence to determine E; min. These calculations are highly sensitive to 
the precise shape of the band spectrum and they should be performed separately for each specific 
band structure. Some details of the threshold calculations and the corresponding results can be 
found for the Kane band model, which describes the band spectrum in Hg, _,Cd,Te [SS, 571, and 
for the Lax model, which can be used for the description of the carrier dispersion laws in 
many-valley narrow gap semiconductors such as Pbl -,Sn,Te or Bir -XSb, [l&133]. The detailed 
description of the band dispersion law models will be given below in the material-specific sections. 

The results are as follows for the Kane spectrum for eeh and ehh processes, respectively 

&I s 6; min = Eg + &a , (19) 
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where m, is the effective mass of the electron and M,, of the heavy hole, respectively. It was assumed 
here that m, -+ M,,. 

For the Lax spectrum which is essentially the anisotropic Dirac model 

&a = m, sin2(b) ’ 
&I E E; min = Eg + &a , 

where m, and ml are the transverse and longitudinal effective masses in the valley, respectively. It 
was assumed here that m, $ ml. C#I is the angle between the axes of the equivalent valleys in the 
spectrum. 

As e, 6 eg in both cases, the activation temperature dependence of the Auger rate can be 
observed only in the relatively narrow interval T < E, $ E,. 

Let us now turn to the impact ionization process. Its probability is also given by expression (1) 
because according to the principle of detailed balance, the probabilities for the direct and the 
inverse processes coincide. Hence, Eq. (8) is also valid for the ionization rate if one substitutes the 
statistical factor Pi for P, in Eq. (8): 

(21) 

The general expression obtained in this way is valid for any carrier distribution. If the distribu- 
tion functions are the Fermi functions with one temperature but different quasi-Fermi levels, it is 
easy to show that 

Pi =exp 7 
( > 

i” - ic p 
r. 

Hence in the case of quasi-equilibrium, the rates of the Auger recombination and impact 
ionization differ only by the factor exp(([, - c,)/T) and coincide in the full thermodynamical 
equilibrium when i, and <, are equal. So if one is interested in quasi-equilibrium conditions only, 
there is no difference which quantity to calculate, and usually, the ionization rate is more 
convenient for calculations. The rate of either process is not zero even in equilibrium, but they 
compensate each other in these conditions, as it should be. 

The method of Beattie and Landsberg is a convenient one and has been used in a significant part 
of the Auger rate calculations in narrow gap semiconductors. It is applicable, however, only in the 
low temperature region (see Eq. (10)). Moreover, its results may deviate extremely rapidly from the 
true rate values as the temperature is increased. It was found [43] that the error of the method 
approaches 100% at T as low as a,/20 in a material with a highly anisotropic many-valley 
spectrum, such as Pbl _,Sn,Te or Bil _,Sb, (see Fig. 3). As far as we know, the precision of the 
method is yet to be investigated for the Kane band model. 

A simple analytical approach to the Auger rate calculation is possible again in the limiting case 
that is in some sense opposite to that considered by Beattie and Landsberg, i.e., when the carriers 
are degenerate and their concentration is so high that &F % Ed. This situation has been studied for 
the many-valley narrow gap semiconductor with the Lax band spectrum [18]. As in the limit 
&F B E, the only parameter that determines the size of the integration area in the rate integral (8) is 
kF, the Fermi momentum, one can easily find the dependence of the rate on kF simply by 
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C,(n’p + $1 
R 

0 
0 

, 

.O’ 
0 

Fig. 3. The ratio of the Auger rate found analytically Cl83 using the method of Beattie and Landsberg to the rate 
calculated numerically [43]. 

introducing the dimensionless variables pi = ki/kF and removing kF from the integral which turns 
into a dimensionless constant. The result is as follows 

R - ki - n413 , 

where n is the carrier concentration (it was assumed that n = p in Ref. [18]). 
Analytical methods based on the non-equilibrium Green’s function technique were also de- 

veloped for Auger rate calculations in narrow gap semiconductors [131,132,94], but they were not 
as popular as the Beattie-Landsberg approach or direct numerical calculations. 

2.2. Impact ionization 

The basic quantity that describes the impact ionization process is the probability, W,(k), that the 
electron in the state k generates an electron-hole pair per unit time. The ionization probability can 
be expressed as 

w(k) = s 8 
-d3kld3k;d3k2W(k;,k--,kl,k2), @.&)9 (22) 

where W is given by Eq. (1). The evident property of the ionization probability W,(k) is that it can 
have non-zero values only if the corresponding carrier energy c(k) exceeds the ionization threshold 
cl (see Section 2.1). The total ionization rate can be expressed through W, as 

G = s 
= f(k) w,(k) > 
(2di)3 (23) 

wheref(k) is the distribution function of the ionizing carriers. 
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Another important quantity is the ionization coejkient a, defined as the probability for ioniz- 
ation of an electron per unit path in the field direction. It is connected to the ionization probability 
through the following relation 

l 
a(E) = & s 

= f(k)W,(k) = z ) 
(27&)3 

where ud(E) is the carrier drift velocity. The impact ionization velocity is defined as 

where y1 is the concentration of ionizing particles: 

n = s 
2djk f(k) . 
(243 

(24) 

(25) 

(26) 

One can see from Eqs. (23)-(25) that the ionization intensity depends on the shape of the 
distribution function of the ionizing particles. As a result, the computations for impact ionization 
are, in general, significantly more complicated than that of Auger recombination. Indeed, recombi- 
nation is usually studied under conditions of quasi-equilibrium when the shape of the distribution 
functions is known (Fermi functions). On the contrary, impact ionization is studied typically in 
a highly non-equilibrium situation, for example in a high electric field, and the shape of the 
distribution function of the high energy ionizing particles is not known. The calculation of this 
distribution function is a complicated task, first of all because the function depends on the electron 
scattering processes at high energies (of order cg), which are often questionable, as well as the 
precise shape of the carrier dispersion law in this region. In addition, the very computation of the 
far tail of the distribution function in a high field is a complicated problem in itself. An analysis of 
the well-known attempts to calculate the high energy tail of the distribution function 
[114,11,108,79,45,127,109] ( some recent results in this field can be found in Refs 
[37,38,105,30,126]) lies outside the scope of our review. We will briefly outline here only the main 
features that follow from these studies. 

At low fields the ionizing carrier distribution in the electric field consists of very few electrons 
that were accelerated along the field without a single collision (Shockley’s ballistic electrons). Hence 
the carrier distribution is highly anisotropic at these energies, looking like a sharp needle in the 
field direction. At higher fields one finds a more or less isotropic halo of more numerous Ridley’s 
lucky drifting particles [lOS] that could avoid inelastic collisions in their movement but underwent 
more probable elastic (or quasi-elastic) scattering processes. The major part of the carriers is 
concentrated at lower energies. Their distribution is formed under the influence of both elastic and 
inelastic scattering processes. These electrons dominate the current. 

The boundaries between these energy regions are not fixed. They depend on the carrier 
dispersion law, scattering mechanisms and the electric field value. So the ionization threshold may 
lie, generally, in any one of the regions. In insulators and wide gap semiconductors where the 
threshold energy is high, it usually lies, depending on the material and on the field value, in 
Shockley’s or Ridley’s region. In narrow gap materials where the ionization threshold is low it can 
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fall not only into these high energy intervals but also into the low-energy region even in a moderate 
field. 

Ionization by rare carriers that belong to the far tail of the distribution function is typical for 
insulators and wide gap semiconductors where the ionization threshold is high. On the contrary, in 
zero gap semiconductors, such as HgTe or Hg, _,Cd,Te alloys with x I 0.16 (at T = 4.2 K), the 
ionization threshold equals zero because ag is zero so that all the carriers can ionize. Correspond- 
ingly, the ionization rate is determined here by the “main body” of the distribution function or even 
by its low energy part [17,49]. This may simplify the calculations because the main part of the 
distribution function can often be found with the help of the well-known methods and under 
suitable approximations of the physics of hot electrons [SO, 1061, which may not be applicable to 
the far tail of the distribution function. For example, the effective temperature approximation is 
justified in HgTe [ 17,931, and it has been used in Ref. [44] for analytical calculations of the impact 
ionization rate in this material. 

The approach developed for zero gap semiconductors can also be applied to the narrow gap ones 
if the mean carrier energy in the applied field is greater than, of order of, or only slightly less than 
the ionization threshold energy. Physically, this is the high field limit, when the ionization rate 
becomes high. However, it does not require a very high electric field in the narrow gap materials 
because, on the one hand, the threshold is low for small cg, and on the other hand, small ag results in 
light carrier masses and hence in high mobility and low scattering rates, both factors being 
favourable for intense carrier heating. This approach has been applied to the calculation of the 
impact ionization probability in narrow gap semiconductors with the Lax spectrum such as 
Phi _,Sn,Te and Bii _XSb, [18]. In this article, the carrier distribution functions were taken in the 
Fermi form because of the frequent electron-electron collisions (effective temperature approxima- 
tion). As a result, the calculations could be performed in quasi-equilibrium conditions in full 
analogy to the common Auger rate computations. Gelmont’s expressions for the Auger transition 
rates in Kane semiconductors at equilibrium [55,57] (see Eqs. (32) and (33) in Section 3.2.1) also 
give the impact ionization rates calculated under the same conditions, if one considers the 
temperature in these formulae as the effective temperature of the ionizing carriers. 

If impact ionization is studied in lower fields so that the mean carrier energy is much less than cl, 
the well-known Townsend-Shockley arguments [ 120,114] become applicable to narrow gap 
semiconductors. In these situations, only the ballistic particles that could avoid collisions in their 
drift in the field can gain sufficient energy for ionization. Assuming the carrier mean free path 1, to 
be constant and small as compared to the ionization free path I, = &i/E, one can write the 
distribution function of the high-energy particles that are few in number 

f(a)-exp(-y)=exp(-$). (27) 

Taking into account Eqs. (22) (23) and (25) as well as the fact that IV, # 0 only for E 2 E,, one 
concludes immediately that in the low field limit 

(28) 

The dependence (28) is often used for the interpretation of the experimental data in narrow gap 
semiconductors in the low field region when the ionization rate is low. 
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More general and much more complicated numerical Monte Carlo simulations that can, in 
principle, describe the impact ionization process throughout a wide field region, were also used for 
the study of impact ionization in narrow gap materials [41,29,61,83]. We will discuss the results 
obtained using this method in more detail in the material-specific sections below. 

3. Mercury-cadmium telluride 

3. I. Band spectrum and material parameters 

The band spectrum of Hg, -,Cd,Te (see Fig. 4) is usually described by the Kane band model 
[78]. It includes four bands: the conductivity band E, the degenerate valence band that consists of 
the light hole and heavy hole bands (B and A, respectively), and the spin-split band c. As the 
spin-orbital splitting d, i.e., the energy interval between the extrema of the valence band B and 
spin-split band c, is large, d z 1 eV, the three band approximation of the Kane model works well 
for the description of the carrier dispersion laws in the narrow gap alloys when sg 4 d. The 
Hamiltonian of the model under this approximation can be found in Refs. [SS, 19,531, and we will 

EEEA BAAE 
BBAE 

-BABE 

indirect 

Fig. 4. The Auger transitions in the band structure of Hg, -,Cd,Te [83]. 
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not reproduce it here. Generally, the corresponding band spectrum is anisotropic, but a small 
warping of the equal energy surfaces is often neglected. The dispersion laws of the electrons and 
light holes coincide in this approximation and are given by the equation 

h2k2 
- = 
2m, 

The effective mass of electrons, m,, and that of light holes, ml, at the bottom of the bands are the 
same and can be expressed as 

1 2P2 -=- +‘=‘(z$$+L), 
m, h2.5, m. m, 

(30) 

where m, is the free-electron mass, P is the Kane matrix element, 2m0 P2/A2 = 18 eV [ 1223, which is 
practically composition and temperature independent for Hg,_,Cd,Te. On the contrary, sg is 
a function of x and T, and a number of phenomenological expressions for E,(x, T) can be found in 
the literature. We reproduce one of them here that was presented in Ref. [33] and is valid for 
O<x<0.6and4.2<T<300K 

E~(x, T) = -0.302 + 1.93x + 5.35 x 10-4T(1 - 2x) - 0.810x2 + 0.832x3 . 

Here T is in degrees Kelvin and E, is in eV. 

(31) 

According to Eqs. (30) and (31), m, can vary over a wide range as the alloy composition is varied. 
The heavy hole mass Mh is not sensitive to the composition and equals (0.4-0.6) x m. [47,99,122]. 

The value of the high frequency dielectric constant IC, in Hg, _,Cd,Te equals 9.8-14 [46,53]. 

3.2. Auger recombination 

3.2. I. Theory 
The different possible Auger transitions in Hg, -,Cd,Te and the alloy composition dependence 

of the corresponding ionization threshold energies are presented in Figs. 4 and 5 [83]. The electron 
states are denoted 1 to 4 instead of 1,2, 1’ and 2’ but we hope that this will not confuse the reader. 
One can see from these figures that only the transitions shown in the upper row in Fig. 4 can take 
place in narrow gap alloys with x x 0.2-0.3 when E, < A, the spin-orbital splitting. The first 
transition labelled EEEA in the figure is an eeh process, and the other two are ehh transitions. The 
threshold energies can be found in Ref. [83] from the full tight-binding band structure calculations 
using a set of 14 orbitals. So the results are valid over the full composition range. The anisotropy of 
the spectrum has also been taken into account in this approach, which is not large and is usually 
neglected. Of course, for the narrow gap compositions the results are close to those that have been 
found earlier with the help of the three band approximation of the Kane model (see Eq. (19)). The 
activation energy sihh in Eq. (19) corresponds to the BAAE transition, and the activation energies for 
the other processes from the upper row in Fig. 4 equal szeh because the electron and light hole 
bands become mirror-symmetric for sg 6 A. As a consequence, the rate of the BAAE transitions is 
much higher than that of the other ehh channel because of smaller activation energy and larger 
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Fig. 5. Ionization energy for different Auger processes (see Fig. 4) as a function of HgTe content for different momentum 
directions of the ionizing carrier. The ionization energies are calculated from the minimum ionization energy (E, min = E& [83]. 
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density of states in the heavy hole band. One cannot neglect, however, the rate corresponding to the 
eeh channel using similar arguments because Reeh - n2p whereas Rehh - np2 (see Section 2.1), and 
the relative importance of eeh and ehh transitions depends on the temperature and carrier 
concentrations (see Eq. (34)). So one has to consider two Auger transition channels, one of eeh type 
(EEEA) and the other of ehh type (BAAE). 

A considerable number of articles have been devoted to the calculation of the Auger rate in 
Hg, _,Cd,Te [54-57,60,62,35,34,15,49,44]. More detailed theoretical calculations can be found 
in the series of papers by Gelmont [54457,60]. 

In [54,55] the carrier band spectrum in Hg, _.Cd,Te was described by the three-band Kane 
model that approximates the material’s band dispersion law with a high precision in the narrow 
gap material. The eeh-transitions that were considered are more important in n-type material. Two 
electrons and a heavy hole take part in this process (see Fig. 1). The specific feature of the Kane 
spectrum is that the interband overlap integral of the Bloch amplitudes of the carrier wave 
functions equals zero at the Auger transition threshold, and this fact was first taken into account 
simultaneously by Gelmont [54,55] and by Gerhardts et al. [62]. In the simplified approach to the 
Auger rate calculation, when the Bloch structure of the carrier wave functions is neglected 
[16,35,34], the interband overlap integral is assumed to be a non-zero constant at the threshold. 
When the correct form of the overlap integral is incorporated into the calculations, the temperature 
dependence of the calculated transition rate differs from that obtained when the precise structure of 
the wave functions is not taken into account. Furthermore, if the electrons are degenerate, the 
correct concentration dependence of the rate [55,62] also turned out different in comparison with 
the simplified approach. 

If electrons and holes are non-degenerate and the temperature T is much less than sg, the 
following expression for the Auger transition rate, either recombination or ionization, in thermo- 
dynamical equilibrium has been obtained [55] for the eeh process which is more important in 
n-type material: 

(32) 

where n is the actual electron concentration, ni = ,/m exp( -&J2T) is the electron concentra- 
tion in the intrinsic material, m, and M, are the electron and heavy hole masses, respectively, 
N,* and N,* are the effective numbers of states in the bands (see Eq. (14)), and IC is the value of the 
dielectric constant which corresponds to the frequency of the transition at the threshold of the 
process. If the gap width exceeds the optical phonon energy which is the case for technologically 
important alloys with x = 0.2 and 0.3, then one can substitute the high-frequency dielectric 
constant K, for IC in Eq. (32). We remind the reader that np = n? at equilibrium and so Eq. (32) has 
essentially the same form as Eq. (17). 

The effect of the warping of the heavy hole band on eeh recombination velocity has been studied 
in Ref. [55] and it turned out to be small. 

Auger transitions in the p-type Kane semiconductor were considered in Ref. [57] under similar 
assumptions. In this case, the ehh transition channel is important (see Fig. 2). For the ehh 
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Fig. 6. Plot of g(cr) [57]. 

mechanism there is one electron and two heavy holes in the initial state, and one of the holes jumps 
into the light hole band after the transition. The expression for the ehh transition rate at 
thermodynamical equilibrium (for either recombination or impact generation) is as follows: 

Rh = A,&, 
(33) 

This expression is valid for non-degenerate electron and hole distributions at temperatures much 
less than sg. In Eq. (33), p is the hole concentration, and the function g(cI), CI = m,.e,/(Mr.,T), is 
expressed through a one-dimensional integral. The results of numerical calculations of g(a) are 
presented in Fig. 6 [57]. In the limiting cases g reduces to 

(we have corrected a misprint in Ref. [57] where cl’/’ stood in the denominator). 
One can see from the expressions for A, and Ah that the activation energy for the ehh transitions 

is two times less than that for eeh, in agreement with Eq. (19). 
Using Eqs. (32) and (33), one can easily find the ratio of the ehh rate to the eeh one: 

_ = 3 ~pWa) Rh J m,cg .sihh 
R, xn a ’ ‘=MhT=T’ (34) 



106 A. V. Dmitriev, M. Mocker/Physics Reports 257 (1995) 85-131 

It is evident that small c( values (i.e. T $ &zhh = (&/Mh)&g) are favourable for eeh transitions, 
whereas ehh ones may be important at lower temperatures when cx becomes large. 

Both Eqs. (32) and (33) were obtained with the help of the method of Beattie and Landsberg. 
The quantity that is usually measured in experiments is the lifetime of the non-equilibrium 

carriers. To connect it with the calculated Auger coefficients, let us consider the carrier balance 
equations taking into account the recombination via eeh and ehh channels as well as the reverse 
process, i.e. impact ionization: 

an ap 
& = & = (&n + &p)(nf - np) . (35) 

Then, for the small-signal Auger lifetime, when densities of the excess carriers are much less than 
the equilibrium concentrations, one obtains 

1 
; = (no2 + n?)A, + (p,’ + n?)Ah , (36) 

where no and p. are the equilibrium carrier densities. 
Th typical shape of the temperature and extrinsic carrier concentration dependence of the 

lifetimes in n- and p-type material are shown in Fig. 7 [96]. In this article calculations according to 
Gelmont’s formulae were performed for Hg,_,Zn,Te, the narrow gap semiconductor with the 
Kane spectrum and with the material parameters similar to those of Hg, _,Cd,Te. The lifetimes 
calculated using the results of Ref. [3S] when the interband overlap integral is treated as a constant 
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Fig. 7. Temperature dependence of the calculated carrier lifetime in (a) n-type and (b) p-type Hgo.sIZno.,gTe [96]. 7R, 

the radiative lifetime; tA, the Auger lifetime; dashed line; Casselman-Petersen theory; dashed-dotted line, Gelmont 
theory. 
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are also shown in the same figure. One can see that the latter approximation gives incorrect 
temperature dependence of both electron and hole lifetimes. Of course, the concentration depend- 
ence of the lifetimes remains the same in both approaches because it is determined entirely by the 
classical carrier statistics. 

The situation changes when the electrons become degenerate. In Ref. [56] the Auger rate was 
calculated for this case under the assumption that the Fermi energy of the electrons was small as 
compared to ag and that the holes were non-degenerate. The main Auger process is eeh here. 

The equation of the electron concentration balance in this case is as follows: 

an 
- = A,N%%&/T) poexp at [ (+y-P]. 

where 

(37) 

F”(Z) = ’ mdx 
s 

XV 

T(v + 1) 0 1 + exp(x - z) 

is the Fermi integral, r(v) is the r-function, co is the equilibrium value of the carrier chemical 
potential, and A, is the Auger coefficient for the eeh channel (see Eq. (32)). 

Expanding Eq. (37) about small deviations of the carrier concentration from its stationary value, 
one can find in the linear approximation the small-signal lifetime of the electrons at an arbitrary 
excitation level and degree of degeneracy. The following expression [56] corresponds to highly 
degenerate electrons (T 6 c,) and low excitation (n - no 4 no): 

1 8h5(3x2nO)5’3AcN,* _- - 
+ h2po(3n2no)2’3 

z 15&~(2m,T)“~ 1 3m,T ’ (38) 

At high excitation levels when n = p and electrons are degenerate (but the condition &F 4 sg still 
holds), the lifetime is given by the following expression 

1 88h5(3x2)5’3A,N,*n8’3 -_= 
45 &(2m, T)5’2 ’ z 

It follows from Eq. (39) that z - n, 8/3 for the degenerate n-type semiconductor whereas the 
calculations with a constant value of the interband overlap integral give z - no 2 [34]. The power 
(- 3) in the concentration dependence of z was found simultaneously in Ref. [62] but it was given 
there without derivation. 

The region of high electron concentration in n-type material when the Fermi energy of the 
electrons is comparable to E, was investigated numerically in Ref. [35,34]. It was already 
mentioned above that there is no suitable analytical method for these conditions. As the carrier 
energy is high, the transitions are no longer concentrated near the threshold but they take place 
from a wide region of the momentum space with dimensions that are comparable to the k; value at 
the threshold. As a consequence, the precise forms of the overlap integrals are not as important here 
as in the low-temperature near-threshold case, because the integrals are averaged now over a wide 
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region in k-space. Hence one can expect that the use of the simple constant approximation for them 
in Refs. [35,34] probably did not influence significantly the concentration dependence of the 
lifetime. The numerical calculations showed that the electron lifetime due to the eeh process in 
a degenerate electron gas is proportional to n-O, where a = 0.7-1.0 depending upon the relations 
between T, c, and ag. 

Another numerical calculation of the Auger transitions in Hg,_,Cd,Te was carried out in 
Ref. [15]. In contrast to the approach of Casselman and Petersen, the Kane band model was used 
here for calculation of the overlap integrals as in the theory of Gelmont. Taking carrier degeneracy 
into account, the Auger recombination and ionization rates for both eeh and ehh processes were 
calculated in Hg,.sCdO.z Te but for comparatively low carrier concentration n up to lOi cmW3 so 
that the Fermi energy remains much less than E,. The results are presented in Figs. 8-10 [15]. In 
Fig. 8, the temperature dependence of the Auger coefficients is shown. The coefficients A+ and 
B,, ,, for recombination and ionization, respectively, are defined through the transition rates by the 
usual expressions 

R, = A,n2p , Rh = Ahnp2 (40) 

0 
2r L 2t 1 8 

6 010 2 ‘ 6 Eld 2 6 '10 2 ‘ 6 6 10' * 
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Fig. 8. Calculated Auger recombination coefficients A and impact ionization coefficients B as functions of temperature 
T for various excess carrier densities in Hg, _,Cd,Te with x = 0.2 and Nd = 10’4cm-3 [lS]. (a) The coefficients for the 
eeh transition (Auger transition 1), where for the curve with An = 0, Al = B1. (b) The coefficients for the ehh transition 
(Auger transition 7). Since A7 is only weakly dependent on An except at the lowest temperatures as can be seen from 
Fig. 9, the graphs for A7 with An > 0 are not shown. 
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Fig. 9. Calculated recombination coefficients A and impact ionization coefficients B at various temperatures as functions 
of excess electron density for n-type samples of Hg, -,Cd,Te with x = 0.2. The coefficients for eeh transitions, AI and B1 , 
are shown in (a) and those for ehh transition, A, and B,, in (b). Full curves, Nd = 10-14cm-3; broken curves, 
Nd = 10’5cm-3 [15]. 

for recombination and 

1, = &VO~O , Ih = &P,noP;/Plo (41) 

for ionization. Here subscript e denotes the eeh process and h the eeh one, p1 is the concentration of 
the light holes that are the ionizing particles in the ehh process, and subscript 0 stands for the 
equilibrium values of the concentrations. Of course, in the case of degenerate statistics, the Auger 
coefficients in Eqs. (40) and (41) depend upon carrier concentrations as shown in Fig. 9. 

In these lifetime calculations, the influence of the 300 K background radiation that may fall on 
the sample was taken into account [15]. It produces an additional density of non-equilibrium 
electron-hole pairs and hence influences the mean lifetime. It is clear from Fig. 10 that even a small 
flux of the 300 K radiation may change the low-temperature carrier lifetime noticeably. The 
experimental data from Ref. [62] that are also shown in the figure agree well with the calculated 
curves. It is worth noting, however, that in the original paper [62], the same data were explained by 
the Auger recombination without taking the 300 K background into account and the agreement 
with their calculations was also good. 

3.2.2. Experiment 
We will turn now to the experimental evidence of the Auger recombination processes in 

Hg, _,Cd,Te. All data correspond to the alloy with x z 0.2, which has a smaller gap width in 
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Fig. 10. Calculated Auger recombination times in n-type Hg, _,Cd,Te, x = 0.20, as functions of temperature for various 
fractions, f of 300 K background radiation. (a) The combined recombination time for eeh and ehh transitions and 
experimental points [62] are also plotted for different extrinsic electron density rtex: (0) nex = 4 x 10’4cm-3; ( x) 
nex = . 13 x 10” crne3. , (+I 4x = 1.7 x 1015 cmm3. (b) The recombination times for eeh and ehh transitions, z1 and T,, 

respectively, shown separately: full curves: Nd = 1014cm-3; broken curves: Nd = 1015 cmm3 [lS]. 

comparison with the other popular compositions, and hence is favourable for Auger recombination 
(see Section 2.1). 

The paper [62] cited above appears to be the only one where z(T) dependence was explained 
entirely by Auger recombination over the wide temperature interval 2 < T < 200 K that includes 
the liquid helium temperature region (see Fig. 11). Their measurements were performed using 
samples with a rather low extrinsic electron concentration 4 x 1Or4 to 1.7 x lOi cmP3. They also 
carried out theoretical calculations similar to those of Gelmont (see the preceding section); the 
corresponding results are also shown in Fig. 11. 

A narrower temperature interval 80 < T c 160 K was investigated in Ref.’ [123]. This interval 
covered, however, both regions of the intrinsic and extrinsic conductivity. The observed temper- 
ature dependence of the lifetime coincided with that calculated according to Ref. [16] for all the 
eight samples investigated. The measured z(no) dependence in the interval of the extrinsic electron 
density no = 3 x 1014 to 6 x 1Or5 cme3 was typical for Auger recombination in the case of 
non-degenerate statistics: z - no’. 

In [31,5] the recombination in n-Hg, _.Cd,Te with x around 0.2 and no = 2 x 1Or3 cmP3 was 
investigated. The temperature was low, 4.2 < T < 13 K, so the concentration of intrinsic carriers 
was negligible, and the electron density did not depend upon T, which was evident from the Hall 
effect measurements. The carrier lifetime increased rapidly as the temperature was decreased: 
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Fig. 11. Experimental lifetime data versus temperature in different n-Hg, _,Cd,Te samples (closed triangles: x = 0.20, 
the extrinsic electron concentration ner = 1.3 x 10” cmm3; open triangles: x = 0.20, nex = 1.7 x 1Ol5 cmm3; crosses: 
x = 0.192, n er = 7 x 10’4cm-3; dashed and dashed-dotted lines: theoretical values for comparison [62]. 

z N T -3.3. The lifetime value approached 1 ps at T = 4.2 K. It appears to be the largest lifetime 
value observed in Hg, _,Cd,Te with x = 0.2. The rapid low temperature increase of a lifetime was 
attributed to the Auger recombination, for which the calculations predict a similar behaviour (see 
Fig. 10, the curves corresponding to the absence of the background radiation). 

In a number of articles where n-type samples were studied [13,10,103,3], as well as the p-type 
ones [ 125,111], the Auger recombination was used to explain a sharp decrease of the lifetime when 
the temperature was raised in the region of intrinsic conductivity (whereas it was assumed that at 
lower temperatures the lifetime was limited by the carrier recombination through impurity states, 
see Section 3.5). This interpretation was sometimes supported by the observation of the concentra- 
tion dependence of the lifetime z(pO) N pt [3], where it has been found over the equilibrium hole 
concentration interval 1.2 x 1Ol6 I pO I 5.5 x 1Ol7 cmW3. 

In many experimental papers the only evidence for the presence of the Auger transitions was that 
the value and the temperature dependence of the lifetime were close to those calculated for the 
Auger recombination process. It is worth noting, however, that, generally, one cannot unambigu- 
ously identify the recombination mechanism using the temperature dependence of the carrier 
lifetime only. For example, in Ref. [13] the measured z(T) dependences which appeared quite 
similar to those obtained in Ref. [62] were explained invoking Shockley-Read recombination in 
the region of extrinsic conductivity (see Fig. 12). Only a combined investigation can give solid 
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Fig. 12. Experimental temperature dependence of the lifetime in n-Hg, -,Cd,Te [13]. (1) x = 0.22, n = 2 x 1015 cm-j; 
(2) x = 0.21, n = 0.89 x 10”cm-3; (3) x = 0.21, n = 1.1 x 1015cm- 3. Lifetime is given in seconds. 

evidence for a definite recombination mechanism. For example, in the series of works by Hangleiter 
[67-691 on Si samples not only was the dependence of the lifetime on T, no and the excess carrier 
concentration measured in wide intervals of the parameters and found to be typical for Auger 
recombination, but also the photoluminescence spectra in the spectral region around 2~~ were 
studied, which made it possible to observe the radiation of the hot carriers that appeared as a result 
of the Auger process. Combined investigations of this kind have not yet been carried out in 
narrow-gap materials. In addition, the results of the early calculations of the Auger rates with 
a constant value of the interband overlap integral were often used in experimental papers for 
data fitting instead of the more precise formulae of Gelmont or the results of Gerhardts- 
Dornhaus-Nimtz and Beattie, which might introduce a considerable error (see Fig. 7). 

3.3. Impact ionization 

The impact ionization in Hg,-,Cd,Te attracted 
tron-hole recombination. 

As mentioned above, at equilibrium the ionization 

considerably less attention than the elec- 

rate in Hg, _,Cd,Te is given by Gelmont’s 
formulae (32) and (33) for ionization by electrons and by light holes, respectively. These expressions 
are valid also in the non-equilibrium conditions if the distribution of the ionizing particles is given 
by the Boltzmann function with some effective temperature 7’* that should be substituted for T in 
Eqs. (32) and (33) to obtain the corresponding ionization rate. This approach has been used in 
Ref. [61] for the calculation of the I-V curves in n-Hg, _,Cd,Te in a strong electric field that 
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causes interband breakdown. Monte Carlo simulation of the hot electron distribution function in 
Ref. [61] showed that its high energy tail which contains the ionizing particles is, actually, close to 
the simple Boltzmann exponential function. 

Another Monte Carlo study of the impact ionization in Hg,_,Cd,Te was performed in 
Ref. [83]. The calculated field dependence of the ionization coefficient followed Shockley’s formula 
(see Eq. (28)). The main attention in Ref. [S3] was concentrated, however, on the compositions with 
low-HgTe content and hence with wide gap (of the order of 1 eV), so we will not consider the results 
obtained there in more detail. 

Experimental study of the impact ionization velocity in the narrow gap Hg, _,Cd,Te has been 
carried out in a series of papers by Bogdanov and co-workers [22-25). The n-type specimens with 
x z 0.20 were used for the measurements with electron concentration n77K z 4 x 1014cm-3 and 
electron mobility around 1.6 x 10”cm2/Vs. The ionization velocity has been measured at T = 4.2 
and 77 K as a function of the applied electric field E in the interval 150 to 300 V/cm. The field 
dependence of the ionization coefficient agreed well with Shockley’s formula 

g(E) = 90 expW) 1 

where 

g,[4.2K]=l~lO~s-~; a-‘[4.2K] = 25Vfcm ; 

g0[77K] = 5.6x 105s-’ ; a-‘[77K] = 55V/cm. 

The ionization coefficient decreases when the temperature is raised because the energy gap 
increases with the temperature (see Eq. (31)). The g(E) dependence is illustrated in Fig. 13 [23]. 

At higher electric field, the ionization rate rises and Shockley’s exponential field dependence 
for g is no longer valid. The actual g(E) increase becomes slower (see Fig. 14 [46]). The authors of 
Ref. [46] gave no indication to what temperature their data correspond to but it is likely that they 
observed the impact ionization at 77 K because other measurements they included in Fig. 14 for 
comparison were carried out at liquid nitrogen temperature. Some inconsistency in the results 
obtained by different groups that is evident in Fig. 14 is probably connected with the errors in the 
determination of the alloy composition. 

The magnetic field effect on the impact ionization velocity in n-Hg, _,Cd,Te was studied both 
experimentally and theoretically in Refs. [24,25]. As the magnetic field was raised, a non-mono- 
tonic variation of the electric field that causes the breakdown was observed, which was explained 
by the effect of the Hall electric field on the electron heating and ionization (the so-called transverse 
breakdown). 

3.4. Radiative recombination 

As the gap width is increased, the relative importance of the Auger recombination decreases, and 
in Hg,_,Cd,Te with x z 0.3 another intrinsic interband recombination process becomes more 
important, namely radiative recombination. In full analogy with what is reported in standard 
textbooks in the case of wide gap semiconductors (see, for example, [27,115]), the radiative 
recombination rate in narrow gap materials can be easily expressed in terms of the absorption 
coefficient, a(o). The latter can be determined experimentally [21,39] or calculated [7, 891. Using 
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Fig. 13. Electric field dependence of the electron impact ionization velocity in n-Hg, -,Cd,Te with x = 0.20 (1) at 4.2 K 
and (2) at 77 K [22,23] and in Hg, _,Cd,Te with x = 0.205 (3) at 77 K [97]. g is measured in s-l, E in V/cm. 

the experimental data obtained by Blue [21], the radiative carrier lifetimes in Hg, _,Cd,Te were 
determined in Ref. [104]. More often the lifetime was calculated using theoretical values of the 
absorption coefficient [32,111]. In these papers the standard a(w) dependence for a direct bandgap 
semiconductor with two parabolic bands was used but more refined calculations for Hg, _,Cd,Te 
where its specific band structure was taken into account [7] gave a similar result [ill]. 

The radiative lifetime r, is given by the following expression [ill]: 

6n 6n n; nf 
7 =-----=-= 

r RAw) Gb’np @(no + PO + W ’ 
(42) 

where n and p are the actual carrier densities, ni is the intrinsic electron concentration, no and p. are 
the equilibrium carrier densities, 6n = n - n o = p - p. is the concentration of the excess electrons, 
R, is the rate of radiative recombination, and GF is the radiative transition rate at equilibrium [ll l] 

GO = (kBT)3 
r 

7C2C2 h3 s m du ~W+4U2 
0 exp(u) - 1 

= 5.8 x 1o-lqq& yg2(l + !3)(?!)“’ 

x (E: + 3kBTc, + 3.75(kBT)2)nf , (43) 
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Fig. 14. Field dependence of impact ionization velocity in Hg, _,Cd,Te, x = 0.2 [46]. (1) Original data of Ref. [46]; (2) 
data from Ref. [97], x = 0.205, T = 77 K; (3) data from Refs. [22,23], x = 0.20, T = 77K. Solid line, calculation 
according to the model of Ref. [48]. g is measured in s- ‘, E in 10’ V/m. 

where a is the absorption coefficient; u = ho/(&T); o is the radiation frequency; m. is the 
free-electron mass; K is the dielectric constant; K, is the high-frequency dielectric constant; 
temperature is measured in kelvin, and energies are measured in eV. It was assumed here that 
T -c E,. The z(T) dependence is shown in Fig. 15 [32]. 

It is worth noting that the measured radiative lifetime may be noticeably higher than the 
calculated value due to effects such as the re-absorption of the recombination radiation [70,71], 
the influence of the background radiation, or the carrier freezeout to impurities [ 1111. Of course, 
the two latter factors are not specific for the radiative recombination only as it was discussed in the 
previous section (see also Ref. [15]). 

In experiments, radiative recombination in n- and p-type Hg, _,Cd,Te with x around 0.3 has 
been observed in the temperature regions of the intrinsic as well as the extrinsic conductivity but 
not at the lowest temperatures when the impurity recombination becomes more important 
[13,6,111,112]. In Fig. 16 [112] the experimental data for n-Hgo.,Cdo.,Te are represented 
together with the results of calculations of the radiative and Auger transition rates for this material. 
At T > 40K the typical value of the lifetime and shape of its temperature dependence agree well 
with those given by the theory of the interband radiative recombination. At lower temperatures the 
carrier lifetime increases, and two lifetimes can be seen in the recombination kinetics. One of them 
was attributed to radiative recombination and the other to carrier trapping. Similar T(T) depend- 
ence found in p-type samples (see Fig. 17) was also explained by radiative recombination together 
with carrier freezeout to acceptors, and the influence of the background radiation was also taken 
into account [ 1111. 
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Fig. 16. Lifetime versus reciprocal temperature in n-Hg,_,Cd,Te [112]. (x) Longer time constant; (0) shorter time 
constant. Broken line, the Auger theory; solid line, radiative recombination theory. 
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As one can see from the figures, radiative transitions were observed in the samples where carrier 
lifetime was of the order of several microseconds. But in a series of publications [72,58,59,73,74], 
samples with a lifetime smaller by an order of magnitude, were investigated. Nevertheless, it was 
found [73] that, in these samples at low temperatures T < 20K, the dominant recombination 
mechanism was radiative recombination. It was, however, no longer the recombination of free 
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carriers but the radiative recombination of the excitons bound by the impurities. The existence of 
exciton-impurity complexes in n-Hg, -,Cd,Te with x close to 0.3 was established using photo- 
luminescence spectroscopy. The recombination photospectrum consisted of bands, the excitonic 
nature of which was supported by the specific shape of the magnetic field dependence of their 
energy [SS, 591. Additional evidence was the temperature dependence of the photoconductivity 
[73]. Indeed, at 4.2 K the luminescence bands correspond to the minima in the photoconductivity 
spectrum, but at 15 K these minima are transformed into maxima. The explanation is simple: at 
lower temperature the excitons created by the external illumination remain stable and do not 
contribute to the conductivity, whereas at higher temperatures they dissociate into free carriers that 
manifest themselves in the conduction. The observed luminescence spectra can be caused only by 
the recombination of the bound excitons because the binding energy of free excitons is too small to 
explain the observed 10 meV difference between E, and the luminescence frequency. Moreover, the 
structure of the luminescence spectra is sensitive to the impurity concentration in the sample [733. 

The connection between the process of radiative recombination of excitons and free carrier 
lifetime was established with the help of simultaneous measurements of the kinetics of photocon- 
ductivity and photoluminescence [73]. It was found that a delay exists between the beginning of the 
exciting light pulse and the appearance of the luminescence, the delay value being equal to 0.2 ps. 
Photoconductivity measurements have shown that the free carrier lifetime is also equal to 0.2 ps. 
Hence one can suppose that the free carrier recombination takes place through the formation of the 
excitons which take approximately 0.2 ps, with their subsequent radiative recombination. 

3.5. Shockley-Read recombination 

Another important channel for non-equilibrium carrier recombination is the Shockley-Read 
process that is connected with the radiationless carrier capture into the localized states at 
impurities and defects. In the simplest case, it is assumed that the trap creates only one energy level 
in the gap and the electrons and holes are captured by this state in turn. 

Statistics of this recombination process and the corresponding temperature and concentration 
dependence of the lifetime under different observation conditions are discussed in detail in many 
textbooks (see, for example, [20,9,27,81]). These results are valid in narrow gap materials, too, so 
we will not reproduce here the well-known expressions. 

The key quantities that define the Shockley-Read lifetimes are the cross-sections of the impu- 
rities, which are usually treated as phenomenological parameters. Generally, the cross-sections can 
be calculated in the microscopic theory, and that has actually been done for several possible 
capture mechanisms in wide gap semiconductors [82,2,92]. In all these calculations it was 
assumed that the transition energy was released in the form of numerous phonons. The results 
obtained in these calculations, however, cannot be directly applied to narrow gap semiconductors. 
Indeed, the cascade capture mechanism [82, l] can hardly take place in narrow gap materials 
because it needs centers with Coulomb potential. But in narrow gap semiconductors the Coulomb 
binding energies are very small because of the small carrier masses and large dielectric constant 
values, so levels of the recombination centers appear not to be connected with the Coulomb 
interaction. The theory of many-phonon capture [2,92] is not very suitable for narrow bandgap 
materials because it utilizes the fact that the trap is deep so that its binding energy is much greater 
than the phonon energy. But in a narrow gap semiconductor where Ed is small, the trap depth is 
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often of the order of the optical phonon energy. For example, electron capture by a trap with the 
emission of only one optical phonon was observed in Hg, -,Cd,Te [118]. 

Calculations of the carrier lifetime due to carrier capture into a non-Coulomb trap with the 
emission of only one phonon have been carried out [42]. It was assumed that the phonon belonged 
to a local mode, that is, electron energy was transferred to the vibrations of the trap itself. Because 
electron-phonon coupling is, generally, stronger with local modes, one can suppose this mecha- 
nism to be more effective as compared to the transitions with the emission of a polar optical or 
deformation acoustical phonon. Impurity potential in Ref. [42] was taken in a short-range form as 
a deep well with a shallow level Ei. The energy of the level depended upon the center position in the 
unit cell. This dependence represented interaction with the local phonons. This capture mechanism 
led to the following expression for the electron lifetime: 

TP312exp (44) 

where N is the trap concentration; o is the frequency of the local phonon; M is the reduced mass of 
the local oscillator (of the order of an atomic mass); R. is the value of the center displacement at 
which the local level of the trap is pushed out from the well, i.e. its energy becomes zero, R. being of 

order of the lattice constant; E~ = ho - Ei; b = G. 
At temperatures T > jet, the lifetime given by Eq. (44) increases as the temperature is raised. 

This temperature dependence and the magnitude of the lifetime agree with the observed ones in 
narrow gap materials [121,90]. 

Experimental studies of the carrier trapping effect upon the free electron and hole lifetimes have 
been reported in a large number of papers. The Shockley-Read recombination becomes noticeable, 
as a rule, in the region of the extrinsic conductivity or in its low-temperature part. The most 
popular method of determination of the recombination centre parameters is the analysis of the 
temperature dependence of the lifetime, which makes it possible to find the energy of the impurity 
levels. A typical temperature dependence of the lifetime is illustrated in Fig. 12 [13]. The lifetimes 
were measured using samples with x z 0.2 and’electron density (0.5-2) x 10” cmp3 and with 
x = 0.3 and electron concentration (6-8) x 1013 cm- 3. Recombination through the impurity level 
situated 70 meV above the valence band maximum dominates over the temperature interval from 
50 to 170 K, whereas the lifetime increase at T < 50 K is connected with the hole trapping to the 
shallow centres with the levels 6 meV above the valence band maximum. In the interval of intrinsic 
conductivity, Auger recombination plays the main role. Observation of centres with 70 meV levels 
was reported also in Ref. [S]. 

In p-type specimens a similar temperature dependence of the lifetime has been observed. Fig. 18 
was taken from Ref. [125]. The shape of the z(T) curves was explained by recombination via the 
traps with 30 to 45 meV levels in some of the samples (curves 1, 2, 3, and 6), whereas levels with 
energy 10 to 15 meV were present in others. 

Detailed studies of the deep levels in p-type Hg, _,Cd,Te were carried out by Polla and Jones 
with co-workers. Using deep level transient spectroscopy (DLTS) [130] in different modifications 
as well as the infrared probe technique, they determined the level energies in alloys with different 
composition. They extracted the lifetime of the non-equilibrium carriers from the photoconductiv- 
ity decay kinetics and found the lifetime dependence on temperature, equilibrium carrier 
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Fig. 18. Temperature dependence of charge carrier lifetime in p-Hg, -,Cd,Te with composition (l-3) x = 0.195 and 
(4-7) x = 0.20 [125]. (1,2) p0 = 8 x 1015cm-3; (4-7) p. = 1.7-2.5 x 101’cmm3. It is not clear what p,, value corresponds 
to (3) because there is a controversy between the different data in Ref. [125]. 

concentration and density of excess electrons. In Figs. 19 and 20 [ 1001 one can see the experimental 
carrier lifetimes in p-Hg,_,Cd,Te obtained in n’--p photodiodes and the results of the calcu- 
lations according to the Shockley-Read theory. In Fig. 21, taken from the same article, the 
compositional dependence of the trap level energy is presented. The levels are situated slightly 
below the midgap. 

In another experiment [76] two recombination levels in the gap were found from the temper- 
ature dependence of the lifetime. Their energies are approximately E,,,, + s.J2 and E,,,, + 3&,/4 
(see Fig. 22). Both levels were observed also with the help of DLTS over a wide composition range 
(Fig. 23). The capture cross-sections of these states were also estimated. For the sg/2 level the 
cross-section for electrons is 10-‘5-10-‘6 cm2 and for holes it equals lo-“-lo-‘* cm2, and for 
the 3&,/4 level the cross-sections are lo- l6 and lo- 17-10-20 cm2, respectively. 

The electron trap levels in the gap in n-type Hg,-,Cd,Te with x around 0.3 were also 
investigated by means of DLTS in metal-insulator-semiconductor structures [40,36]. The same 
eg/2 and 3~,/4 (or 2&,/3) levels were found as in the p-type material. The cross-sections lie in the 
range lo- ‘*- lo- l6 cme2. The role of these levels in carrier recombination has not been clarified, 
however, in Refs. [40,36]. 
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Fig. 19. Lifetime versus temperature in p-Hg, -,Cd,Te, x % 0.2, with different acceptor concentrations. The results are 
explained in terms of a single Shockley-Read recombination center located 55 + 5meV above the top of the valence 
band. Dashed curves show the radiative and Auger lifetime (due to both eeh and ehh processes) [lOO]. 

The origin of these levels is not clear. Recent experiments [84] show that the midgap level is 
probably connected with Hg interstituals. Some other considerations can be found in Refs. 
[76,101,91,77]. The subject needs further study. The problem is a complicated one, and investiga- 
tions are in progress. 

3.6. Thin films and arti$cial structures 

The carrier recombination processes remain generally the same in thin films that were observed 
in the bulk. However, the recombination at defects is often enhanced in thin films. First, this is due 
to the influence of surfaces and interfaces that can be considered as plane defects and may produce 
numerous recombination levels [129]. Second, thin films often contain a considerable density of 
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Fig. 20. Dependence of lifetime on the concentration of excess carriers for p-Hg, _,Cd,Te, x = 0.39, at 77, 193 and 
295 K, with data modelled to Shockley-Read theory [lOO]. 

dislocations because of the lattice mismatch between layer and substrate or between different layers 
[119]_ 

The carrier recombination in thin Hg, _,Cd,Te films was studied by many authors 
[134,10,64,63,3,116,95,12]. Their results show that the carrier lifetimes and their typical temper- 
ature and carrier concentration dependence in films with thickness in the urn and sub-urn range are 
similar to those observed in bulk samples. For example, Figs. 24 and 25 illustrate r(T) curves 
measured in n- and p-type Hg,_,Cd,Te films grown on GaAs substrates using metalorganic 
chemical vapour deposition (MOCVD). The data were explained entirely by bulk recombination 
mechanisms. A similar z(T) dependence, was observed in liquid phase epitaxy (LPE) p- 
Hg, -,Cd,Te, x = 0.157 to 0.23 [3] where, in addition, the concentration dependence of the 
lifetime was measured. Being close to z(p) N pe2 at 77 K, it demonstrated the importance of the 
Auger recombination in these relatively narrow gap films even at low temperatures. The Shock- 
ley-Read levels with energy cvrnax + (0.7-0.8)s, were found in both n- and p-Hg, _,Cd,Te films 
[ 116,3,134] and, in addition, those with energy E, max + (0.25X).35)&, were observed in p-type films 
[3,134]. 

A similar situation occurs also in molecular beam epitaxy (MBE) HgTe/CdTe superlattices 
[107] where again the magnitude of the lifetime (several hundred nanoseconds) and z(T) depend- 
ence are close to the values typically observed in a good quality bulk material of comparable 
band-gap energy (corresponding to the wavelength of approximately 5 urn) and doping level. The 
experimental data agreed well with the calculated r(T) dependence if the entire bulk recombination 
mechanisms were taken into account. No specific effects of the carrier quantum confinement on the 
lifetime have been observed in Ref. [107]. 
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Fig. 21. Position of the trap energy in p-Hgr -,Cd,Te deduced by lifetime measurements as a function of temperature 
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Fig. 22. Carrier lifetime as measured (circles) and as calculated from parameters determined by DLTS in p-Hg, _,Cd,Te 
for the trap at $a,, curve (1); for the trap at - &J2, curve (2); and for the two combined, curve (3) [76]. 

There were not many attempts to calculate the carrier lifetime in Hg, _,Cd,Te-based quantum 
confinement structures. However, calculations [75] have shown that the Auger recombination rate 
increases in Hg, -,Cd,Te quantum wires as compared to quantum wells with similar width, but 
the rate is reduced significantly in quantum boxes. The calculated values of z are much greater than 
the bulk Auger lifetime in the material with similar .sg and doping level, but regrettably, the 
approximations made during the calculations [75] introduce errors in the absolute values of the 
calculated recombination rates and so one cannot directly compare the results with other data. 

In the experimental papers cited above in this section, only the bulk recombination processes 
were observed in thin films. But there are also numerous observations of the recombination at 
surfaces, dislocations and other nonuniformities, in thin films as well as in the bulk crystals. We will 
discuss them in a separate section. 
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Fig. 24. Temperature dependence of the minority carrier lifetime of n-type MOCVD Hg, _,Cd,Te on GaAs. Theoretical 
lifetimes for three recombination mechanisms used for data fitting are also shown separately and in combination [ 1343. 

Fig. 25. Temperature dependence of the minority carrier lifetime of p-type MOCVD Hg, _,Cd,Te on GaAs. Theoretical 
lifetimes for three recombination mechanisms used for data fitting are also shown separately and in combination [ 1341. 
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Table 1 

Surface and interface recombination velocities in Hg, _.Cd,Te on different surfaces and interfaces 

Growth method” Surface Recombination velocity (cm/s) Reference 

SSR 

SSR 

LPE 

LPE 

LPE 

Free surface, 
chemical etching 

Free surface, 
plasma anodation 

Free surface, 
chemical etching 

ZnS interface 

LPE CdTe interface 
Surface coated 
with amorphous 
(70%ZnS + 30%CaF3) 

300~500 C641 

900&l 500 C641 

1000-5000 C641 

2ooop 4000 C641 

1000-20 000 C641 
5000 c41 

a SSR, solid state recrystallization; LPE, liquid phase epitaxy. 

3.7. Recombination at macroscopic nonuniformities and dislocations 

Let us now consider the influence of macroscopic nonuniformities and extended defects upon 
carrier lifetime in Hg, _,Cd,Te. The important kinds of nonuniformity that are always present in 
a sample are surfaces and interfaces. The recombination rate increases near a surface [124, lo], 
which may be connected either with recombination through surface levels or with gap reduction at 
the surface due to change in alloy composition that usually takes place in this region [117]. In 
Table 1 one can find the measured surface recombination velocities for specimens with x z 0.2 at 
T = 77 K (bulk carrier lifetimes were of the order of 1 us). Some additional data can be found in 
Ref. [SS]. 

For other temperatures S may be significantly different. In Ref. [26] it was found that 

Ins-T 

over the temperature interval 280 to 340 K, so that S varies from 1.2 x lo4 to 3.3 x lo4 cm/s. For 
lower temperatures (around 50K) the temperature dependence of S has been studied [Sl], where 
an activation exponent was used to fit the data. However, the calculated activation energy itself was 
temperature dependent, varying from 2.3 meV at T -C 40K to 125meV at T > 50K. 

The recombination velocity at the interface depends not only on the neighbouring materials but 
also on the technique used for the fabrication of the structure. Whereas a relatively high S value 
was reported for the Hg, -,Cd,Te/CdTe heterointerface grown by liquid-phase epitaxy [64] (see 
Table l), no traces of interface recombination was found in HgTe/CdTe superlattices grown by 
photoassisted MBE [107]. 

Low angle boundaries between crystallites with slightly different orientation (of order of 1.5’) 
that are often present in crystalline material can also serve as an additional drain for non- 
equilibrium carriers. This occurs, actually, only when the density of the low angle boundaries is as 
high as 200-300 cm - ’ [65], whereas in most crystals their density is lower, being of the order of 
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l&100 cm-‘. Even in crystals with the highest investigated density of the boundaries (300 cm-‘), 
carrier lifetime in the low temperature interval T < 100 K is reduced only by a factor of three in 
comparison with material with low boundary concentration (less than 10 cm- ‘), and for higher 
temperatures the effect of low angle boundaries is further reduced. It is worth noting that for 
intermediate boundary concentration ( m 90 cm-‘), the lifetime slightly increases when their 
concentration is raised, so it is rather probable that the change in the density of the low angle 
boundaries is accompanied by changes in the system of Shockley-Read centers and the observed 
boundary density dependence of the lifetime is in fact a more complicated phenomenon. 

Let us now turn to the data concerning the influence of dislocations on the recombination rate in 
Hg, _,Cd,Te. It was found in Refs. [128,113,66] that dislocations do not influence the carrier 
lifetime at the dislocation density Nd lower than (2-5) x 10’ cmB2 in n-type films and crystals with 
x = 0.24.3. Bulk lifetime at 77 K in these specimens was in the sub-microsecond range. At 
Nd 2 5 x 10’ cmp2, the lifetime decreased as Nd increased (Fig. 26). On the contrary, in similar 
films with bulk lifetime 0.5-2 ps and sB = 0.1-0.25 eV corresponding to the wavelength 4-10 pm 
no influence of dislocations on the lifetime was found for Nd up to lo7 cm-* [63]. Perhaps the 
origin of this contradiction is the connection between the densities of the dislocations and the point 
recombination centers, in analogy with the previous case. 

Another source of macroscopic nonuniformity is the alloy composition fluctuations in the bulk. 
Their characteristics depend significantly upon growth conditions. The regions with increased Hg 
content, where the gap is reduced and the Auger recombination rate is hence enhanced, have the 
strongest influence upon lifetime. In Ref. [123], regions with Hg content up to 95% were found 
around Te inclusions 40-50 pm in diameter. According to the calculations, these inclusions may 
reduce the lifetime by one or two orders of magnitude, even if they are present in a concentration as 
low as lo6 cme3 [123]. 

100 10' 108 
EPD (cme2) 

Fig. 26. Carrier lifetime measured at 78 K versus dislocation density [ 1131. Solid line, data from Ref. [ 1133; dashed line, 
data from Ref. [128]. The threading dislocation densities were obtained from the Hg,_,Cd,Te layer etch-pit density 
(EPD) revealed by chemical etching. 
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4. Concluding remarks 

One can see from the material presented above that interband transitions in narrow gap 
semiconductors can take place in different conditions and through different channels. Some of 
them were studied in more detail, others attracted less attention. From the theoretical point of view, 
the intrinsic recombination processes, the Auger recombination and radiative transitions, are more 
transparent, whereas recombination through states of different defects and surface recombination 
in narrow gap materials are almost uninitiated fields for theorists. From the point of view of 
experiment, the situation looks different. For example, the parameters of the main recombination 
centers in Hg, _,Cd,Te have been found by many methods, but the experimental determination of 
the characteristics of the Auger transitions is rather difficult. The investigation of the recombina- 
tion and impact ionization in narrow gap semiconductor-based size quantizing structures is only at 
its beginning. However considerable progress in the study of interband electron transitions in 
narrow gap semiconductors has taken place in recent years, especially in Hg, -,Cd,Te, and the 
number of articles devoted to this important problem is increasing. Hence one can look forward to 
further important results in this field in the future. 
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Appendix. Calculation of density matrices 

Both the Kane and Lax models of band structure were obtained using the k-p method explicitly 
taking into account only the interaction between several states separated by the narrow energy gap 
(see, for example, Ref. [53]). As a result, the corresponding electron Hamiltonians are represented 
by matrices with a finite (and not large) number of rows and columns, m. We will show below how 
one can find the density matrices that describe mixed electron states that correspond to these 
Hamiltonians. 

As a rule, the Hamiltonian l?(k) of a model is known in the Luttinger-Kohn basis and so for 
k # 0 it is a non-diagonal matrix. Let us consider fi in the basis of its own eigenfunctions (that are 
the Bloch waves) where it has the diagonal form 

fi= 

cl(k) 0 0 0 ... 0 0 

0 cl(k) 0 0 +.. 0 0 

0 0 c2(k) 0 ... 0 0 

0 0 0 cZ(k) -a. 0 0 

d d 
0 0 

d 
0 

0 ... E,,,(k) 0 

0 ... 0 M) 

(Al) 
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where the subscripts 1,2, . . . , m denote different bands, and each band has two branches due to 
Kramers degeneracy. 

For simplicity, let us consider m = 3 so that 

fj= 

&l(k) 0 0 0 0 0 

0 &l(k) 0 0 0 0 

0 0 &Z(k) 0 0 0 

0 0 0 E*(k) 0 0 

0 0 0 0 &3(k) 0 
0 0 0 0 0 83 04 

642) 

Our goal is to find the density matrix that describes the carrier state in the band i that contains 
the states from both branches in equal portions. Let us take i = 1 as an example. It is evident that in 
the basis of the eigenfunctions 

pi(k) =; 

100000 

010000 

000000 

000000 

000000 

000000 

(A3) 

However, one cannot simply substitute this expression for p in Eq. (7), because the bases of the 
eigenfunctions are different for different k. Hence one needs either to reduce all the expressions for 
the density matrices to a common basis or to build an expression for p which will be independent of 
the choice of basis. We will use the second idea and build the expression for p in tensor form. 

It is clear from Eq. (A2) that the matrix 

A(k) - c3(k) I^ , 

where r^ is the unit matrix, has two diagonal matrix elements in place of c3(k) (in the eigenfunction 
basis). Consequently, the matrix 

(l?(k) - ~~(k)f)(fi(k) - E3(k)?) 

has non-zero matrix elements only at the two upper places on the main diagonal so it differs from 
b (Eq. (A3)) only by a multiplier. This means that p^ can be expressed as 

(E?(k) - EZ(k)f)(fi(k) - c3(k)f) 

‘(k) = Sp{(I?(k) - E3(k)f)(fi(k) - c3(k)f)} 
(A4) 

so that Sp$ = 1 as it should be. 
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The generalization of this procedure and formula (A4) to arbitrary i and m is straightforward. 
The expressions for 6 obtained in this way are not connected with any particular basis and can be 
immediately used for the calculation of the overlap integrals. 

Practically, it is more convenient to use them in the Luttinger-Kohn basis, because the 
expression for the Hamiltonian is known just in that basis and I^ is invariant to the choice of basis. 

In the Kane band model the expressions for the overlap integrals that are used in the Auger 
transition rate calculations are as follows [SS, 573 

zch(k, 4) = sP{ @bh(q)) = 

[kxq]T 

4q2c,(k)~~ ’ 

Ilh(k, q) = sp{/I,(k)ph(q)) = 3Ck x q12Ec(k) 
8k2q2 Jw ’ 

W, 41, q, qz) = sP{ Pltk)Ph(ql)P,(q)Phtqz)} 

%tk) Cc, - Gdl 
= 256[(&,2 + $q2P2)(&; + ~k2P2)]1’2 

1 + (qlqz)’ + (kq)’ (qlk)’ (kqz)’ (qqz)’ (414)’ --------- 
2 2 

4142 k2q2 q;k2 k’q; q2q; q1q2 

+ tkqd’tqqz)’ + (kqd’tqqd’ - (kq)2(qlqz)2 

k2q2qfq,2 

(A5) 

(A6) 

(A7) 

w3) 

Here k, q, q1 and q2 are the momenta of electrons; the subscripts c, 1 and h denote the conduction, 
light hole and heavy hole band, respectively; the energies are calculated from the top of the valence 
band SO that c,,,,in = ss; P is the Kane matrix element (see Eq. (30)). 
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