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In this paper, we study theoretically the thermoelectric properties of n- and
p-type PbTe in the wide temperature interval of 300–900 K. A three-band
model of the PbTe electron energy spectrum is used in these calculations. The
full set of the relevant kinetic characteristics is calculated including the
electrical and thermal conductivities, the Seebeck coefficient, and the ther-
moelectric figure-of-merit. The calculated thermoelectric quantities are in
good agreement with the available experimental data.
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INTRODUCTION

Energy production and conversion are among the
most important activities of human civilization and,
indeed, the cornerstone of its existence. The primary
concern and the subject of continual research and
development effort is, of course, to effectively produce
electric energy, the most universal and convenient
one for practical applications. As the lack of fossil fuel
is being increasingly recognized and huge green-
house gas emissions from organic fuel power plants
are producing global climate changes, the efficient
conversion of heat energy to electric energy is
becoming a problem of vital importance.

In this connection, much attention has been
focused on solid-state thermoelectric converters.
They offer a number of advantages over traditional
electric generators, including design simplicity,
absence of moving parts, low-noise performance,
high reliability, and miniaturization without loss in
efficiency. As bidirectional energy converters, they
are also used in eco-friendly cooling systems.

Currently, however, thermoelectric devices are
lower in conversion efficiency compared to the tra-
ditional designs of electric generators or refrigerators

and have therefore not found wide application in
industry. But there exist application areas where the
advantages of these devices prevail over their dis-
advantages. Examples include power sources for
spacecrafts, wrist watches, portable household
refrigerators, electronic, medical, and research
equipment (in particular, that for cooling infrared
detectors and optoelectronic devices), and even seat
conditioning devices in luxury cars.

As the application area of thermoelectric devices
is very wide, it is not surprising that different
materials have advantages in different conditions.
For high-temperature applications, PbTe and its
alloys are among the best-known materials with the
thermoelectric figure-of-merit

ZT ¼ rS2T

j
(1)

approaching 0.7 at T = 700–800 K.1–3 In Eq. 1, r is
the electrical conductivity, S the Seebeck coefficient,
and j the heat conductivity of the material.

PbTe is a narrow-gap semiconductor (Fig. 1), and
many impurities are known to form deep levels or
impurity bands in it, either in the fundamental gap
or on the background of the conductivity or valence
band of the crystal.5–9 A rapid variation of the
density of states in the vicinity of a narrow impurity
band can lead to a significant increase of the
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Seebeck coefficient and hence of the figure-of-merit
according to the well-known Mott formula10 appli-
cable to degenerate semiconductors:

S ¼ p2T

3e

@ ln r
@E

�
�
�
�
E¼EF

¼ p2T

3e

@ ln v2gs
� �

@E

�
�
�
�
E¼EF

: (2)

Here, v is the carrier velocity, s the carrier relax-
ation time, and g the density of states. And, indeed,
a significant increase of ZT up to 1.5 at 700 K was
observed in p-type PbTe co-doped with Tl and Na,
which was attributed to the influence of a Tl impu-
rity band.11

However, it has been shown that a similar
increase of the figure-of-merit could be obtained
using only intrinsic features of the PbTe energy
spectrum. In reality, the density of states also
increases sharply in a vicinity of an extremum of a
crystal band, i.e. of the Van Hove singularity. The
heavier the band, the more rapid the increase, so, in
PbTe, the heavy hole R-band is the most promising
(Fig. 1). This idea was realized in Refs. 12 and 13,
and an increase of ZT up to 1.3 at 700 K has been
observed in p-type PbTe heavily co-doped with K
and Na, so that the hole’s Fermi level is situated
close to the R-band edge13. Similar results were also
obtained in Ref. 14.

In this paper, we develop a theoretical description
of the latter situation. As the figure-of-merit in PbTe
is at maximum at the high temperatures around
700 K, the correct description of the electron
kinetics requires that carrier transport over all
three crystal bands situated in the vicinity of the
Fermi level be taken into account: the electron and
light hole bands with the extrema in L-points of the
Brillouin zone and the heavy hole band with the
maxima in R-points. Three-band carrier kinetics is
rather complicated but allows a unified descrip-
tion of the thermoelectric phenomena in the wide

temperature and doping interval of 300–900 K at
donor and acceptor concentrations up to 1019/cm3.

MODEL DESCRIPTION

PbTe is a cubic crystal, and its conductivity is
isotropic. So we use in our calculations an isotropic
model of its band spectrum.* An important feature
of the electron and light hole dispersion laws is their
strong non-parabolicity, and we take it into account
using the Lax spectrum model in the L-point
extrema. In the Luttindger–Cohn representation
the Hamiltonian of this model can be written in the
formally relativistic form

ĤðkÞ ¼ Eg

2
b̂þ V âk; (3)

that looks similar to the Dirac Hamiltonian in which
Eg/2 stays instead of mc2 and a limiting electron
velocity V �108 cm/s takes place of the light veloc-
ity, âi and b̂ are the Dirac matrices, k is the
momentum calculated from the L-point.16

This Hamiltonian leads to the non-parabolic
energy dispersion laws of the electrons and light
holes:

E�ðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
g

4
þ V2k2

s

; (4)

where the upper signs correspond to the conduc-
tivity band and the lower to the valence one. The
energy is calculated from the middle of the direct
gap in the L-points.

The electron and hole states that correspond to
the Hamiltonian (3) are doubly degenerate accord-
ing to Kramers theorem. These states are equiva-
lent in kinetics so we will not distinguish between
them and will describe them by a density matrix
that contains both states in equal portions. In the
Luttinger–Cohn basis, the density matrices have
the form

q̂�ðkÞ ¼
ĤðkÞ � E�Î

Sp ĤðkÞ � E�Î
h i ¼ E�ðkÞÎ þ ĤðkÞ

4E�ðkÞ
; (5)

Î being the unit matrix.** Then, the only char-
acteristic of an electron state in a band, either the
conductivity or the valence one, becomes its
momentum k.

Other important functions connected with the
energy spectrum are the density of states g, the
carrier velocity v, the momentum k expressed
through the energy and the effective mass at the

Fig. 1. Diagram of PbTe electron energy spectrum variation with
temperature (drawn according to the data in Ref. 4). Lc conductivity
band minima in L-points of the Brillouin zone, Lv valence band
maxima in L-points, R are the heavy hole extrema in R-points.
Energy is in eV, temperature in K.

*An attempt to calculate the Seebeck coefficient of PbTe using an
anysotropic model of its spectrum was recently performed in
Refs. 12 and 15.

**The expression (5) is evident in the basis of the eigenfunctions
of the Hamiltonian where the latter is diagonal.

Calculation of the Thermoelectric Properties of n- and p-Type Lead Telluride Using
a Three-Band Model of the Electron Energy Spectrum

1281



band edges m*. All four do not differ for electrons
and holes:

gðEÞ ¼ 8p

ð2p�hÞ3
E2

g

V3
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1=4
q

; (6)

vðEÞ ¼ V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1=4
p

�
; (7)

kðEÞ ¼ Eg

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1=4
q

; (8)

m� ¼ Eg

2V2
; (9)

where � ¼ E=Eg. The Kramers degeneracy has been
taken into account in Eq. 6. The light carrier effec-
tive mass at the Fermi level

m�ðEFÞ ¼
@2E

@k2

� ��1
�
�
�
�
�
E¼EF

lies in the interval ð0:02� 0:15Þm0, depending on
the doping concentration.

CARRIER CONCENTRATION

Using the expression (6) for the density of states
and introducing dimensionless variables
x ¼ E=T ¼ ðEg=TÞ� and g = l/T, l being the chemi-
cal potential, we come to the following expression
for the carrier density in either the conductivity or
the valence band:

n ¼ EgT2

p2�h3V3

Z1

Eg
2T

x dx

1þ expðx� gÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tx

Eg

� �2

�1

4

s

: (10)

After the shifting of the energy origin to the band
edge for computational convenience, one obtains

n ¼
E2

gT

p2�h3V3

Z1

0

dx

1þ expðx� gÞ
Tx

Eg
þ 1

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tx

Eg

� �2

þTx

Eg

s

;

(11)

and similarly for the light holes but with the other g
sign. The expression for the heavy holes is also
similar but with a different Eg value, see Eq. 39.

In the thermodynamical equilibrium, the elec-
trons in all bands are characterized by one chemical
potential that can be found from the electroneu-
trality condition:

n� p� pR �Nd þNa ¼ 0;

where n, p and pR are the concentrations of elec-
trons and holes in L-bands and of holes in R-band,
respectively; Nd and Na are the donor and acceptor
concentrations.

This equation was solved numerically with
respect to the chemical potential l for every tem-
erature and doping level combination, and the l
value found this way was used in subsequent cal-
culations of the kinetic coefficients.

RELAXATION TIMES

At elevated temperatures, even optical phonon
scattering can be considered quasi-elastic so the
relaxation time approximation can be used for the
calculation of the kinetic quantities with the trans-
port relaxation time defined as

1

s
¼
X

k0
Wðk! k0Þð1� cos hÞ; (12)

where Wðk! k0Þ is the carrier interband transition
probability from the state k to k¢, and h is the
scattering angle, that is, the angle between k and
k¢. This expression is valid for any band.

Impurity Scattering

As we use the mixed electron band states, the
probability W in (12) is the actual transition prob-
ability w averaged over the initial and final band
branch indices:

WIðk! k0Þ ¼ 1

4

X

i¼1;2

j¼1;2

wIðk; i! k0; jÞ

¼ 2p
�h

NI
1

4

X

i¼1;2

j¼1;2

V̂k;i;k0;j

2
d EðkÞ �Eðk0Þð Þ

¼ 2p
�h

NIVðk�k0Þ2d EðkÞ �Eðk0Þð Þ

� 1

4

X

i¼1;2

j¼1;2

hk; ijk0; ji2

¼ 2p
�h

NIVðk�k0Þ2Iðk;k0Þ2d EðkÞ �Eðk0Þð Þ;

(13)

where NI is the impurity concentration, V̂k;i;k0;j is the
matrix element of the Coulomb impurity potential
corresponding to the transition, and V(k � k¢) is the
Fourier transform of the Coulomb potential:

VðkÞ ¼ 4pe2

e0

�h

k

� �2

; (14)

e0 is the static dielectric constant, jk; ii 	 Uk;iðrÞ is
the Bloch amplitude of the carrier wave function in
the ith branch of the band.

The averaged overlap integral
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Iðk;k0Þ2 ¼ 1

4

X

i¼1;2

j¼1;2

hk; ijk0; ji2

¼ 1

4

X

i¼1;2

j¼1;2

Z

d3rU�k;iðrÞUk0;jðrÞ

¼ Sp qðkÞqðk0Þ
� 	

¼ �
2ðkÞ þ kk0 þ 1=4

4�2ðkÞ

(15)

describes an additional angle dependence of the
scattering probability caused by the Bloch ampli-
tudes of the wave functions, and q being the den-
sity matrices of the corresponding band (see Eq. 5).
Due to the low-angle character of the Coulomb
scattering

jk� k0j 
 k; k0; I2 � 1:

Substituting (13) into (12) and taking into account
the expressions (4), (7) and (8), one obtains

1

sI
¼ 4pLNIe

4

e2
0vk2

¼ 4pLNIe
4V�

e2
0E2

gð�2 � 1=4Þ3=2
; (16)

where L is the Coulomb logarithm.
As the Lax spectrum is mirror-simmetric, this

expression is evidently valid for either the electron
and the light hole band.

Introducing again the dimensionless variable
x = E/T instead of � ¼ E=Eg, one has

1

sI
¼ 4pLNIe

4VT

e2
0E3

g

x
Tx

Eg

� �2

� 1

4

" #�3=2

; (17)

and after the shift of the energy origin to the band
edge, one comes to the final expression

1

sI
¼ 4pLNIe

4V

e2
0E2

g

Tx

Eg
þ 1

2

� �
Tx

Eg

� �2

þ Tx

Eg

" #�3=2

: (18)

Acoustic Phonon Scattering

Let us consider the electron-deformation acoustic
phonon interaction. The interaction Hamiltonian is
taken in the simple form

Ĥe�DA ¼ C1 div UðrÞ � Î; (19)

where C1 is the deformation potential, U(r) is the
lattice displacement vector in the continuous med-
ium approximation, and Î is the unit operator with
respect to the electron states in the Luttindger–
Cohn basis.

Within elastic scattering approximation and
assuming equipartition of phonons, the Hamilto-
nian (5) leads to the following transition probability:

wDAðk; i! k0; jÞ ¼ 2pT0C2
1

�hX.ms2
jhk; ijk0; jij2d EðkÞ � Eðk0Þð Þ;

(20)

where T0 is the lattice temperature, qm and X is the
mass density and volume of the crystal, and s is the
sound velocity.

Averaging the probability over the band branch
indices, i and j, which reduces to the substitution of
Sp½q̂�ðkÞq̂�ðk0Þ in place of jhk; ijk0; jij2 in the Eq. 20,
the upper signs being valid for the conductivity
band and the lower ones for the valence band, one
comes to the expression for the average transition
probability:

WDAðk! k0Þ ¼ pT0C2
1

2�h.mXs2

�2ðkÞ þ kk0 þ 1=4

�2ðkÞ
� d EðkÞ � Eðk0Þð Þ: ð21Þ

The corresponding relaxation time (12) can now
be easily calculated:

1

sDA
¼

C2
1T0E2

g

6p�h4.ms2V3

ð2�2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1=4
p

�
: (22)

In terms of x = E/T it becomes

1

sDA
¼

C2
1E3

g

6p�h4.ms2V3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tx

Eg

� �2

�1

4

s

2
Tx

Eg

� �2

þ1

" #

; (23)

and calculating the energy from the band edge, one
comes to the final expression:

1

sDA
¼

C2
1E2

gT

6p�h4.ms2V3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tx

Eg

� �2

þTx

Eg

s

� 2
Tx

Eg
þ 1

2

� �2

þ1

" #

Tx

Eg
þ 1

2

� ��1

: ð24Þ

This formula is applicable to either the conduc-
tivity or the valence band.

Polar Optical Phonon Scattering

At higher temperatures, this is the most effective
carrier scattering mechanism in a polar crystal such
as lead telluride. The corresponding averaged elec-
tron transition probability due to absorption and
emission of an PO-phonon with the frequency x and
momentum q in the elastic approximation equals

Wðk! k0Þ ¼Wðk;k� qÞ

¼ 4p2e2�h2x
1

e1
� 1

e0

� �
Iðk;k0Þ2

q2

� ð2f0 þ 1Þd EðkÞ � Eðk0Þð Þ; ð25Þ
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where

f0 ¼
1

expð�hx=TÞ � 1

is the PO-phonon distribution function, e0 is the
static dielectric contant, and e1 the high-frequency
one.

The formula (25) differs from the standard
expression17 as it contains the overlap integral for
the Lax spectrum.�

In the elastic approximation, k¢2 = k2 and

q2 ¼ ðk0 � kÞ2 ¼ k
02 � 2kk0 þ k2 ¼ 2k2ð1� cos hÞ;

h is the scattering angle. Substituting this into the
probability (25) and farther into the relaxation time
(12), one comes to the expression

1

sPO
¼
Z

2d3k0

ð2p�hÞ3
2p2e2x�h2V2

E2
g

� 1

e1
� 1

e0

� �
�2 þ k2 cos hþ 1=4

4�2k2

� ð2f0 þ 1Þd Eðk0Þ � EðkÞð Þ: ð26Þ

The term proportional to cos h disappears after
the angle integration, and the integral of the
d-function gives the density of states

gðEÞ ¼ 8p

ð2p�hÞ3
Eg

V2
�k

(see Eqs. 6 and 8), so one gets

1

sPO
¼ 2e2x

�hV

1

e1
� 1

e0

� �

ð2f0 þ 1Þ�
2 þ 1=4

4�k
: (27)

Introducing, as above, the dimensionless variable

x ¼ 1

T
E� Eg

2

� �

¼ Eg

T
�� 1

2

� �

;

one transforms the PO-phonon realxation time to
the final form

1

sPO
¼ e2x

2�hV

1

e1
� 1

e0

� �

ð2f0 þ 1Þ xT

Eg

� �2

þxT

Eg
þ 1

2

" #

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT

Eg

xT

Eg
þ 1

� �
s

xT

Eg
þ 1

2

� �" #�1

: ð28Þ

Now, all carrier relaxation times have been cal-
culated and the resulting full transport relaxation

time, s(E), can be expressed through them according
to Mathiessen’s rule.

KINETIC COEFFICIENTS

The thermoelectric coefficients are calculated as a
solution of the Boltzmann transport equation in the
s-approximation (see, e.g., Ref. 19). The thermo-
electric coefficients can be expressed as functions of
the kernel

RðEÞ ¼
X

k

v2
xðkÞsðkÞd E� EðkÞð Þ ¼ gðEÞv2

xðEÞsðEÞ;

(29)

where g(E) is the density of states, vx(k) is the group
velocity of carriers with the momentum k in the
direction x of the applied field, and s is the transport
relaxation time.

The electrical conductivity r, Seebeck coefficient S
and electron heat conductivity j0 found in this way
are given for each band by the following formulae:

r ¼ e2

Z1

�1

dE �@f

@E

� �

RðEÞ; (30)

S ¼ e

Tr

Z1

�1

dE �@f

@E

� �

RðEÞðE� lÞ; (31)

j0 ¼
1

T

Z1

�1

dE �@f

@E

� �

RðEÞðE� lÞ2; (32)

where l is the chemical potential, and f(E) is the
carrier Fermi distribution function, so that

@f

@E
¼ �1

T

exp ðE� lÞ=T½ 
fexp ðE� lÞ=T½  þ 1g2

: (33)

The heat conductivity j0 corresponds to a zero
chemical potential gradient in the sample. It is
connected with the usual electron heat conductivity
jcarrier that corresponds to a zero electrical current
and enters the figure-of-merit, by the formula

jcarrier ¼ j0 � TrS2: (34)

As there are three bands in the spectrum and,
correspondingly, three carrier groups, namely,
electrons in L-extrema (e), light holes in L-extrema
(lh), and heavy holes in R-extrema (hh), the result-
ing formulae for the kinetic coefficients become
rather complicated:20–22

r ¼ re þ rlh þ rhh; (35)

�The overlap integral is band spectrum-specific. For example, a
similar expression for PO-scattering transition probability for
electrons in the Kane spectrum18 also contains an overlap inte-
gral, but one different from Eq. 15.
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S ¼ Sere þ Slhrlh þ Shhrhh

re þ rlh þ rhh
; (36)

j ¼ jlattice þ je þ jlh þ jhh þ T
rerlh

re þ rlh
Se þ Slhð Þ2

þ T
rerhh

re þ rhh
Se þ Shhð Þ2þT

rlhrhh

rlh þ rhh
Slh � Shhð Þ2;

(37)

where jlattice is the lattice thermal conductivity. We
used the following approximate expression for it:23

jlatticeT ¼ 4:75 W/cm: (38)

The calculations according to the formulae above
were performed numerically using the following
values of the material parameters:24–28

Eg;L ½eV ¼ 0:19þ 4 � 10�4 T ½K; Eg;R ½eV ¼ 0:36;
V ¼ 1 � 108 cm/s; s ¼ 5 � 105 cm/s;

C1 ¼ 10 eV; �hx ¼ 14 meV;
e0 ¼ 400; e1 ¼ 33;

.m ¼ 8:5 g/cm3; L ¼ 5:

(39)

The effective mass of heavy holes in R-extrema
was taken as equal to the free electron mass, m0.
The parameters of the heavy holes and even the
positions of their extrema in the Brillouin zone are
not known precisely,4,12,24 so we used the data pre-
sented in Ref. 24.

RESULTS

The results of our calculations of the kinetic
quantities of lead telluride are presented in
Figs. 2–9.

Figures 2 and 3 show a normal semiconductor
temperature dependence of the conductivity at low
carrier density, with similar electron and hole
mobilities (note the different conductivity scales in
the two figures). Holes here are in L-extrema and
their effective mass is equal to that of electrons. The
conductivity increase with the temperature is due to
thermal activation of additional carriers. At high
acceptor concentration, the Fermi level moves to the
heavy hole R-band so the average hole mobility
decreases. In both electron and hole heavily doped
materials, the conductivity diminishes as the tem-
perature is raised because of predominate phonon
scattering.

The temperature dependence of the Seebeck
coefficient S is shown in Figs. 4 and 5. One can see
that, as one would expect, the maximum of the
absolute value of S that corresponds to the Fermi
level position close to a band edge moves to higher
temperatures for higher doping levels in both n- and
p-type material. At a temperature around 800 K,
the donor doping level of around 1 � 1018=cm3 or
acceptor doping level close to 1 � 1019=cm3 are most
advantageous. In the latter case, the Fermi level
comes close to the R-band edge.

Our calculations give a moderate 30 % gain in
absolute value of the Seebeck coefficient in p-type
material over that in n-type at the high tempera-
tures around 800 K.

The full thermal conductivity (Figs. 6, 7)
increases with the increase in the carrier concen-
tration, as expected. At low doping levels, when only
symmetric L-bands are filled with carriers, the
thermal conductivity values of n- and p-materials do
not differ significantly. At higher doping levels, light
and fast electrons conduct heat better than heavy
and slow holes from the R-band but the difference is
smaller than one could expect looking just at the
mobilities. The reasons are the considerable input
from light holes in p-type material and effective

Fig. 2. The temperature dependence of the electrical conductivity of
n-type PbTe for three doping levels, as shown in the inset.

Fig. 3. The temperature dependence of the electrical conductivity of
p-type PbTe for three doping levels, as shown in the inset.
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bipolar heat transport mechanism in the three-band
spectrum (note the last terms in Eq. 37).

The resulting temperature dependence of the
figure-of-merit in n- and p-type PbTe is shown in
Figs. 8 and 9. The positions of ZT maxima correlate
with those of the Seebeck coefficient in Figs. 4 and
5. The calculated maximum figure-of-merit value is
higher in p-type material than in n-type one, the
difference approaches 30 %. It is not that large
because the higher Seebeck coefficient of the heavily
doped p-type material is partially compensated by
the lower heat conductivity of the moderately doped
n-type material, whereas their electrical conductiv-
ities are nearly equal.

We also performed a study of the influence of the
particular carrier scattering mechanisms, i.e. of
impurity, DA- and PO-scattering, on the thermo-
electric properties of PbTe. The most effective scat-
tering channel at elevated temperatures is
PO-phonon scattering. If the collision rate of carri-
ers with PO-phonons could be reduced in the

Fig. 4. The temperature dependence of the Seebeck coefficient of
n-type PbTe for three doping levels, as shown in the inset.

Fig. 5. The temperature dependence of the Seebeck coefficient of
p-type PbTe for three doping levels, as shown in the inset.

Fig. 6. The temperature dependence of the full thermal conductivity
of n-type PbTe for three doping levels, as shown in the inset.

Fig. 7. The temperature dependence of the full thermal conductivity
of p-type PbTe for three doping levels, as shown in the inset.

Fig. 8. The temperature dependence of the thermoelectric figure-of-
merit of n-type PbTe for three doping levels, as shown in the inset.
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material, its thermoelectric figure-of-merit would
increase considerably. These results will be pub-
lished elsewhere.

One could hardly expect that the simplified iso-
tropic one-valley model of the spectrum used in this
work would allow to quantitatively describe exper-
iments carried out on numerous dissimilar samples
throughout the entire wide intervals of doping and
temperature considered here. But the agreement of
our results with the experiment seems generally
reasonable for a simple model, being better for some
quantities and somewhat worse for others. In gen-
eral, the model better describes characteristics of
p-type material than of n-type, maybe because the
heavy hole R-band extrema have smaller anisotropy
than the carriers in L-extrema.

The calculated values of the Seebeck coefficient in
p-type samples are in good agreement with the
experimental data presented in Refs. 12 and 15 at
300 K, and are quite close to those measured in
heavily acceptor-doped samples,13 especially at ele-
vated temperatures. Agreement with the experi-
mental data for n-type material presented in Refs. 12
and 29 is also not bad.

The calculated electrical conductivity values of
p-type material are in fair agreement with those
measured in heavily doped samples in Ref. 13. The
calculated n-type conductivity is, however, higher
than typical experimental data, probably due to lack
of heavy electron mass in our isotropic model of the
spectrum, which leads to a decrease of scattering
probability and to a mobility increase. Correspond-
ingly, the calculated heat conductivity is also
somewhat higher than the experimental one. But
the simultaneous increase of the electrical and heat
conductivities does not influence the thermoelectric
figure-of-merit (1), and the calculated ZT values are
in good agreement with typical experimental data
for both n- and p-PbTe.1,2

Our calculations did not show a considerable fig-
ure-of-merit increase in p-type material due to an
influence of the heavy hole R-band. We were not
able to reproduce the high figure-of-merit values
obtained in Refs. 13 and 14, the calculated ZT value
being almost two times lower than was observed
there. This may be connected with a non-optimal
choice of the R-band parameters; they are not
known precisely, and their variation would probably
somewhat change the results of calculations. It also
cannot be ruled out that the high measured ZT
figures in Refs. 13 and 14 might be caused by a
physical mechanism different from the mere R-band
edge influence.

CONCLUSION

We have calculated the thermoelectric charac-
teristics of PbTe using an isotropic three-band
model of its electron energy spectrum. We have
taken into account light electrons and holes in
L-extrema and heavy holes in R-extrema, which
allowed us to perform calculations in wide intervals
of donor and acceptor doping and of the tempera-
ture. The maximum calculated figure-of-merit val-
ues were 0.56 for n-type material and 0.71 for
p-type, being very close to typical experimental fig-
ures in this material.1,2
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