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In this paper we study hot electron transport in bulk wurtzite n-InN using an iterative numerical
method. We calculate field dependence of the electron drift velocity using several sets of the
material parameters that can be found in the literature, and the results are compared with the
available experimental data. Then, we perform more detailed calculations for different lattice
temperatures and different carrier concentrations using the material parameters that provide the best
fit to the experimental data. © 2011 American Institute of Physics. �doi:10.1063/1.3533981�

I. INTRODUCTION

For a long time, the band gap width of around 2 eV was
assumed in the wurtzite InN. However, recent experimental
and theoretical studies have provided convincing evidence
that the band gap in InN is actually close to 0.7 eV.1,2 Thus,
the alloys InxGa1−xN of InN with wideband GaN can be
widely used in optoelectronic applications, particularly in
general light sources.3 So electrical properties of these mate-
rials attract much interest, and the problem of charge trans-
port in these semiconductors in high electric fields becomes
more important.

The charge carrier transport in the nitride semiconduc-
tors has been studied theoretically many times in recent
years. For example, hot-electron transport in InN was studied
numerically in papers4–10 using the Monte Carlo method, and
in the paper11—with the help of a quasiequilibrium thermo-
dynamic approach. It is worth noting, however, that in al-
most all these publications �with the exception of Ref. 6� the
free electron concentration was assumed to be of the order of
1017 cm−3, and in all these papers the comparison of calcu-
lated results with the experimental data was not presented.
An explanation of this fact is absence of the experimental
data obtained using these comparatively pure crystals. In-
deed, such purity of InN crystals could not be attained by
that time technologies, and in the only known to us experi-
mental study12 of high field transport the samples with a
much higher free electron concentration of 9�1018 cm−3

were used.
In this paper the high field electron transport in InN is

studied theoretically under the conditions that correspond to
the experimental situation using the new parameters of the
InN electron spectrum and a new numerical method for the
solution of the Boltzmann transport equation.

The paper is organized as follows. In the Sec. II, we
describe a physical model of the semiconductor we use in the
subsequent calculations. The main results, i.e., electron drift
velocity-field characteristics of InN in various conditions, are
presented in the Sec. III. The results are discussed and con-
clusions are made in the Sec. IV. The calculation method is
briefly described in the Appendix.

II. MODEL DESCRIPTION

There is a certain disagreement in the literature about the
values of InN material parameters. We could find four differ-
ent sets of them �Table I�. LO- and TO-phonon energies are
taken from the review of electron and vibrational states of
InN,13 in which the narrow band gap value �g=0.7 eV is
also recommended. Material parameters constituting S1 set
were recommended in the review of the structure and elec-
tronic properties of InN,14 and were earlier used in the
paper15 to calculate low-field electron transport properties of
InN. The band gap width �g=0.7 eV was also adopted in the
papers9,10 for studies of the hot electron transport in InN. In
these papers the electron effective mass in the �-point of the
Brillouin zone was set to m�=0.045m0, m0 being the free
electron mass. The set S4 was recommended in the review
article.16 The set S3 is similar to S4, it was used in the
papers4–6,11 to calculate the drift velocity-field characteristics
of InN.

In this paper, we concentrate on purely electron transport
in n-InN and hence use a one-valley model to approximate
the band structure of InN. The lower conduction band mini-
mum is assumed to be in the �-point of the Brillouin zone.
The energy dispersion relation in the neighborhood of the
�-point is assumed to be isotropic but nonparabolic

�2k2

2m�

= ��1 + ��� , �1�

where � is the electron energy, k is the wave vector, and � is
the nonparabolicity parameter that can be expressed as

� =
1

�g
�1 −

m�

m0
�2

. �2�

The higher energy valleys in the conductivity band are
not taken into account in our calculations because there is no
unanimous information about their location and characteris-
tics. However, we performed test calculations assuming that
the second valley of the conductivity band is situated in the
A-point of Brillouin zone with its minimum lying 2 eV
above the �-valley minimum. In our calculations the disper-
sion relation in the A-band was taken isotropic and parabolic,
the electron effective mass was equal to the free electron
mass. Using the results of the test calculations, we studya�Electronic mail: dmitriev@lt.phys.msu.su.

JOURNAL OF APPLIED PHYSICS 109, 023706 �2011�

0021-8979/2011/109�2�/023706/6/$30.00 © 2011 American Institute of Physics109, 023706-1

Downloaded 09 Feb 2011 to 193.232.125.220. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3533981
http://dx.doi.org/10.1063/1.3533981


below the electron transport in the electric field range where
the intervalley scattering does not affect the results.

In our calculations all electron scattering mechanisms
important in the nitride semiconductors are taken into ac-
count, i.e., ionized impurity scattering and scattering by
phonons, namely, deformation and polarization acoustical
and polar optical ones. In this paper, however, we do not take
into account electron-electron interaction. We neglect holes
in the valence band. The phonon system is assumed to be in
the equilibrium and the lattice temperature does not depend
upon the field and remains constant.

III. RESULTS

First, the calculations with different sets of InN material
parameters �Table I� were performed under conditions simi-
lar to the experimental ones,12 i.e., lattice temperature was 77
K and the free electron concentration 9�1018 cm−3. The
comparison of the calculated field dependence of electron
drift velocity with the experimental data12 is presented in
Fig. 1. One can see that the best fit of the experimental curve
is provided by the set S4, which includes the older band
parameter values obtained just for heavily doped samples
with electron concentration close to one used in our calcula-
tions. The results for the set S3 do not differ significantly, the
slightly lighter electron effective mass resulting in a some-
what higher mobility. The results obtained for the most topi-

cal set S1 are also very close to the experimental ones. So we
cannot unambiguously give preference to one of these three
sets of material parameters. However, the set S2 with its very
light electron effective mass provides considerably worse
agreement with the experimental data.

For the further more detailed study of InN high-field
electron properties, we have taken the set S1. We have cho-
sen this set because it is more up to date and seems more
reliable. The use of this set provides good fit of experimental
data and, as far as we know, this set was not examined before
in similar calculations.

In Figs. 2 and 3 the calculations for the material with the
fixed low electron concentration Ne=1�1017 cm−3 and dif-
ferent charged impurity concentrations Ni in the range from
1�1017 to 9�1018 cm−3 are presented. The figures show
that charged impurity scattering is very effective at the high
impurity concentrations exceeding approximately 1
�1018 cm−3 so that no manifestations of electron heating
can be observed in the corresponding vd-E curves that re-
main perfectly linear in the whole field interval. The influ-
ence of phonon scattering on the electron mobility is mini-
mum here, as is evident from the comparison of the lower
curves in Figs. 2 and 3 that almost coincide. The electron
mobility is of the order of several hundreds of cm2 /V s.

At the lower impurity concentration Ni=1�1017 cm−3

the Ohmic mobility becomes considerably higher, especially

TABLE I. Four sets, S1 to S4, of InN material parameters.

Quantity Unit S1 S2 S3 S4

Band gap eV 0.7 1.9 2.0
Effective mass m0 0.07 0.045 0.11 0.12
High-frequency dielectric constant ¯ 6.7 8.4
Static dielectric constant ¯ 11.0 15.3
LA-phonon velocity 105 cm /s 5.2 6.24
TA-phonon velocity 105 cm /s 1.2 2.55
Acoustical deformation potential eV 3.6 7.1
LO-phonon energy meV 73
TO-phonon energy meV 57
Piezoelectric constant C /m2 0.375
Mass density g /cm3 6.81

FIG. 1. The calculated field dependence of the drift velocity vd for different
sets of InN material parameters, the lattice temperature is 77 K, the free
electron, and doping concentrations are 9�1018 cm−3. Experimental data
are taken from Ref. 12.

FIG. 2. The calculated field dependence of the drift velocity vd in InN with
different charged impurity concentration Ni at the lattice temperature T
=4 K and the electron concentration Ne=1�1017 cm−3. Ni=1�1017, 1
�1018, and 9�1018 cm−3, parameter set S1.
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at 4 K where it exceeds 4�103 cm2 /V s. A substantial heat-
ing of the electron system takes place in these conditions,
and vd-E curves become highly nonlinear. In the high-field
region the differential mobility significantly decreases �Fig.
2, upper curve�. Intensive scattering of the hot electrons with
energy beyond the optical phonon scattering threshold can be
considered as the reason of this decrease.

At 300 K, the mean electron energy is higher, and the
optical phonon scattering is intensive already in low fields,
so there is no big change in scattering conditions as electrons
heat up, and the mobility varies only moderately �Fig. 3,
upper curve�.

In Figs. 2 and 3 different levels of impurity compensa-
tion were considered. In the further calculations, we study a
more common situation when the compensation is absent
and hence the doping concentration Ni and free electron con-
centration Ne coincide.

In Fig. 4 the field dependence of InN drift velocity is
presented at the lattice temperature T=77 K for different
doping levels. The drift velocity decreases significantly with
the increase in the doping level due to more intensive ionized
impurity scattering. Simultaneously, the electron Fermi en-
ergy increases as Ne grows up, and this leads to more inten-
sive optical scattering and again to the mobility reduction.

As in Fig. 2 above, a higher level of nonlinearity of the
field-velocity curves is evident in the lightly doped samples.
Intensive cooling of the hot electrons with the energy beyond
the optical phonon energy can be considered as the reason, as
discussed earlier.

The lattice temperature influence on InN velocity-field
characteristics is illustrated in Figs. 5–7 for the free electron
concentrations of 1�1017 cm−3, 1�1018 cm−3, and 9
�1018 cm−3. Every figure contains the curves calculated for
the lattice temperature of 4, 20, 77, and 300 K. Comparing
the figures, one can clearly see that the drift velocity signifi-
cantly decreases with the increase in the doping level. This
effect is more prominent at low temperatures when the pho-
non scattering is less effective but still can be clearly seen at
300 K, which indicates that impurity scattering is important
at the room temperature, too. As above, nonlinearity of the
field-velocity curves increases with the decrease in the free
electron concentration, as illustrated by increasing difference
between low-field �Ohmic� and high-field differential mobili-
ties �Table II�.

The drift velocity decreases as the lattice temperature is
increased. Acoustical phonon scattering is the main reason of
this fact �we checked it by turning this scattering mechanism
on and off in our test calculations�. Furthermore, the relative
difference between the curves corresponding to different
temperatures increases with the decrease in the doping level.

FIG. 3. The calculated field dependence of the drift velocity vd in InN with
different impurity concentration at the lattice temperature T=300 K and the
electron concentration Ne=1�1017 cm−3. Ni=1�1017, 1�1018, and 9
�1018 cm−3, parameter set S1.

FIG. 4. The calculated field dependences of the drift velocity vd for different
doping levels. No compensation: N=Ne=Ni, the lattice temperature 77 K,
the set S1.

FIG. 5. The calculated field dependence of the drift velocity vd at different
lattice temperatures for the set S1 and the doping level 1�1017 cm−3.

FIG. 6. The calculated field dependence of the drift velocity vd at different
lattice temperatures for the set S1 and the doping level 1�1018 cm−3.
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Indeed, the relative significance of the phonon scattering
compared with the ionized impurity scattering increases with
the decrease in the impurity concentration.

The velocity-field characteristics of InN with the free
electron concentration 9�1018 cm−3 at different lattice tem-
peratures are presented in Fig. 7. One can clearly see that the
drift velocity decreases as the lattice temperature is in-
creased, the signature of phonon scattering. However, the
effect is not very prominent, and this shows that the main
electron scattering mechanism at high doping levels is inter-
action with charged impurities.

IV. CONCLUSION

The hot electron transport in wurtzite InN has been stud-
ied. Different sets of material parameters were examined, the
results were compared with the experimental data.12 It has
been shown that the sets S1 and S4 �Table I� provide the best
fit of experimental curve. The more up to date set S1 was
used to study field dependence of the electron drift velocity
in InN under different conditions.
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APPENDIX: THE NUMERICAL METHOD
To describe the electron transport in bulk InN subject to

an electric field E we use the Boltzmann transport equation
�BTE� as follows:

� f�k�
�t

= −
eE

�

� f�k�
�k

+ St̂�f� ,

here k denotes the electron wave vector, and the electron
distribution function f�k� satisfy the usual condition

�
k

f�k� = NV ,

where N is the free electron concentration, V is the crystal
volume. The major electron scattering mechanisms are taken
into account in the collision integral

St̂�f� = �
k�

	W�k� → k�f�k���1 − f�k�� − W�k → k��f�k�

��1 − f�k���
 ,

W�k→k�� being the electron transition rate from the state k
into k�. The relevant scattering mechanisms in the nitride
semiconductors do not affect the spin of electron, and hence
there is no summation with respect to the electron spin indi-
ces in the collision integral.

The well-established Monte Carlo approach17 is a pow-
erful tool for solving BTE. It makes it possible to study
charge transport in a wide range of materials and physical
situations with rather high accuracy. But in the case of non-
linear BTE the method becomes very time consuming,17 be-
cause ensemble Monte Carlo study is to be performed. The
complications that appear when one tries to study the elec-
tron transport in the transient regime seem to be its second
significant disadvantage.17

Deterministic methods based on the collision integral
linearization with respect to the distribution function assum-
ing

f�1 − f� � f ,

and on the distribution function expansion in terms of a suit-
able basis function set were developed in recent years.18,19

Thus, a linear equation set is to be solved instead of BTE.
These methods are quite accurate and effective from the
computational point of view but they become inappropriate
when the linearization cannot be carried out, e.g., when elec-
tron gas is degenerate. It is worth noting that in InN the free
electron concentration is usually rather high so that the elec-
tron gas becomes degenerate even at the room temperature.

In this paper, we apply a new iterative method that re-
quires only the smoothness of the distribution function. With
the help of this method, one can find the stationary distribu-
tion function as well as its time evolution.

TABLE II. Low-field �left� and high-field �right� differential mobilities in cm2 /V s for different lattice tem-
peratures and doping levels �no compensation: Ne=Ni�.

4 K 20 K 77 K 300 K

1017 cm−3 4491 330 4082 340 3189 367 1026 452
1018 cm−3 1721 429 1680 428 1554 427 823 431

9�1018 cm−3 729 415 724 414 705 408 587 376

FIG. 7. The calculated field dependence of the drift velocity vd at different
lattice temperatures for the set S1 and the free electron concentration 9
�1018 cm−3.
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Basics of the method are as follows. If the electron spec-
trum can be considered isotropic, BTE can be modified tak-
ing into account an axial symmetry of the distribution func-
tion:

f�k� = f�k�,k�� ,

where k� and k� are the momentum components parallel and
perpendicular to the applied field, correspondingly. So the
problem becomes a two-dimensional one. Now we introduce
a square grid on the momentum plane:

k�
i = − kmax + �i + 1/2��0, i = 0,1, . . . ,

2kmax

�0
− 1,

k�
j = j�0, j = 0,1, . . . ,

kmax

�0
,

the distribution function values at the grid nodes are un-
knowns to be found. The grid can be sparse if the distribution
function is expected to be smooth. The size of the simulation
area, kmax, should be chosen so that the distribution function
remains well localized within the simulation area. This
means that, on the one hand, kmax should be large enough but
on the other hand, the computational complexity increases
for large kmax, so it should not be taken greater than required.
As the distribution function itself, kmax depends on the ap-
plied field strength.

At the initial moment of time, t=0, the electron distribu-
tion function in the grid nodes is approximated by an equi-
librium Fermi distribution function. Then the iterations be-
gin, and the �n+1�th iteration step is organized in the
following way. The distribution function fn�k� ,k��, found at
the preceding nth step, is used to calculate the collision in-
tegral values. The distribution function values in intermedi-
ate �k� ,k��-points, which are necessary for numerical inte-
grations in the collision integral, can be interpolated from the
grid nodes in the �k� ,k��-space using the bicubic spline
interpolation.20 Note that the collision integral values are to

be calculated on the grid nodes only, thus we have St̂

ij. Now
the new distribution function values in the grid nodes are
evaluated according to BTE

f ij
n+1 = fn�k� −

eE

�
�t,k�� + �tSt̂

ij ,

where �t being a time step �its choice is discussed below�.
This iterative procedure can be considered as the time evo-
lution of the distribution function according to BTE. The
iterations are continued until the convergence is obtained.

In our calculations, the simulation area size kmax was
taken equal to 1.7�107 cm−1. Figure 8 shows that the dis-
tribution function is localized within the simulation area.

The convergence of the method was verified in test runs.
Figure 9 illustrates the time dependence of the drift velocity
for different parameters of the numerical method. Unfortu-
nately, it is difficult to find an easy way to show the conver-
gence of the distribution function itself because of the three-
dimensional nature of the corresponding graphs. For the
fixed field value E=30 kV /cm, electron concentration N
=9�1018 cm−3, and lattice temperature T=77 K, different
time steps �t and grid sizes were examined. We found �t
=10−15 s and the grid size 15�30 to be optimum for the
current task. Figure 9 shows that a decrease of �t and an
increase in the grid size do not affect the result.

The authors consider the method described above as a
convenient tool for the study of similar electron transport
problems in semiconductors. The method can be used under
different conditions, including the degenerate electron gas
statistics. There is no fitting parameters, all relevant scatter-
ing mechanisms can be easily taken into account. The
method can be also used to study the charge transport in the
transient regime. Furthermore, it is quite computationally ef-
fective.
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