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Abstract

We studied theoretically, the electron spectrum and infrared transitions in a superlattice with a unit cell allowing for9
quasi-localised carrier states. The dispersion relation and the band structure of such a system have been found. We calculated
the dipole matrix element for inter-subband carrier infrared transitions. The wave functions and the electron spectrum in this11
superlattice show a peculiarity when the energy of a band state approaches the energy of the quasi-localised state in the
single cell. The absorption strength peaks up at the respective frequencies. c© 2001 Published by Elsevier Science B.V.13
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1. Introduction

Usually, one assumes that in semiconductors, along17
with other crystals, an electron state belongs to one
of the two possible kinds. Namely, it can be either19
a Bloch band state, or a localised state residing in
the forbidden gap. However, a third kind of carrier21
states, resonant or quasi-localised [1], has been shown
to play a signi<cant role in a number of occasions.23
These states, long before known both in optics [2] and
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in quantum mechanics [3], appear in semiconductors 25
e.g., when an impurity level, split oB from one band,
overlaps with another allowed band, or when a deep 27
impurity level overlaps with one of the allowed en-
ergy bands. In certain conditions, resonant states may 29
signi<cantly aBect the kinetic properties of a semicon-
ductor [4,5]. 31

Quasi-localised states may be present in arti<cially
prepared heterostructures, e.g. in two-barrier quan- 33
tum well systems. We have shown earlier [6] that in
their presence the absorption coeEcient signi<cantly 35
increases in the frequency range of the intraband tran-
sitions into the resonant state. Since the latter state 37
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formally belongs to the continuum, one can expect1
it to decay easily into a delocalised wave, so that no
strong electric <eld would be required to add the ex-3
cited electron to an observable photocurrent. Hence,
heterostructures with quasi-localised states sound5
quite appealing as candidates for selective quantum
well infrared photodetectors (QWIPs). These detec-7
tors would combine high spectral selectivity with
low dark current because of low bias applied. Such9
combination is hardly attainable with conventional
QWIPs, where the working transition goes to a bound11
state, or in the opposite case, to a plain continuum
state (see the review article [7]).13

In the cited paper [6], we discussed infrared optical
properties of a single quantum well system. However,15
arrays of quantum wells or superlattices are normally
used for experimental purposes and practical applica-17
tions. Thus, we thought it relevant to consider a peri-
odic structure composed of quantum wells with reso-19
nant states. How the adjacent resonant states interfere
with each other and with the continuum states may21
be a matter of independent theoretical interest. To the
best of our knowledge, neither infrared optical proper-23
ties nor subband spectrum of this kind of superlattices
have been considered before. This is the goal of the25
present paper.

The theoretical approach to the electronic spectrum27
of superlattices is well developed (see e.g. Refs. [8,9]).
In Ref. [10] a detailed spectral analysis of a con-29
ventional AB superlattice (two alternating layers) has
been demonstrated. We use a similar approach to anal-31
yse the electronic spectrum of a superlattice with a
more complex unit cell.33

2. Model

We consider one non-degenerate band, let it be35
the conduction band, of a semiconductor superlattice,
where each cell is described within the eBective-mass37
approximation by a one-dimensional model potential
as follows (see also Fig. 1):39

U (x) =
{−V; 0¡x¡a

0; a¡x¡b

}
+� [	(x) + 	(x − a)];

(1)

where x is the growth direction of the superlattice,
a and b are the well width and the structure period,41

Fig. 1. The considered model potential. Please note the additi-
nal 	-barriers surrounding the well. Several lower subbands are
marked. One subband is supposed to remain below the top of the
main barriers, the rest being above.

respectively, V is the well depth. 	-like barriers on
the well’s edges represent a simpli<ed approximation 43
of additional real barriers of <nite width and height
that would surround each well. The parameter � thus 45
represents the reverse tunnel transparency of the real
barrier. The main barriers of width (b − a) separate 47
the wells. The potential in Eq. (1) is assumed to be 0
at the top of the main barrier. 49

It is clear that the in<nitely high and in<nitely thin
	-barriers, surrounding the wells, cannot be grown up 51
in a real heterostucture. In real structures, all barriers
have <nite height and width. However, the 	-function 53
approximation of real barriers adopted in Eq. (1) is
a well-known simpli<ed method used in a number 55
of quantum-mechanical problems (see, for example
[11]). It corresponds to a very high and thin barrier 57
with <nite penetrability. From the point of view of
the problem, we consider here, the main diBerence be- 59
tween the 	-barrier and the real one is an in<nite height
of the former. As a result, our model system has an in<- 61
nite set of quasi-localised states (resonances) whereas
a real structure hardly can produce more than one or 63
two of them. But as far as we are interested in the
properties of a single resonance, the 	-approximation 65
leads to qualitatively correct and physically meaning-
ful results. 67

If all the structure consisted of only one quan-
tum well with potential (1), we might speak of 69
quasi-localised electronic states in its spectrum.
These states appear on an energy scale close to 71
truly localised states that would exist in the well,
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if the additional barriers (walls) were absolutely1
impenetrable. Finite penetrability of the walls trans-
forms the truly localised size-quantised states into3
quasi-localised states. Of course, this matters only for
the excited states lying above the top of the main bar-5
riers, like the two higher levels in Fig. 1. The lower
ground state in the single quantum well is always7
localised.

Turning back to the periodic heterostructure, let us9
see how the resonant states aBect the properties of the
whole system. The envelope wave functions may be11
represented as


(x) =

{
A1eiqx + A2e−iqx; 0¡x¡a;

B1ei�x + B2e−i�x; a¡x¡b;


(x + b) = eikb
(x); (2)

where q= (1=˜)
√

2m(E + V ), �= (1=˜)
√

2mE, E13
is the particle energy counted from the top of the
main barrier, m is the eBective mass, kb is the15
phase shift of the envelope function, resulting from
a one-lattice-period displacement along the growth17
direction. Ignoring the changes in the eBective mass
across the superlattice layers, we obtain a conven-19
tional boundary condition on the left-hand border of
the well (x= 0):21 


(x)|0+

0− = 0;

d
dx

ln
(x)|0+
0− =�:

Having written similar boundary conditions for the
right-hand border (x= a), we come to a homoge-23
neous system of equations de<ning the coeEcients in
Eq. (2):

25 


eikb eikb −ei�b −e−i�b

(q+ i�)eikb (−q+ i�)eikb −�ei�b �e−i�b

eiqa e−iqa −ei�a −e−i�a

(−q+ i�)eiqa (q+ i�)e−iqa �ei�a −�e−i�a




×



A1

A2

B1

B2


= 0:

A non-zero solution of this system exists only if the
system determinant is zero, hence we obtain the dis- 27
persion relation

cos kb=
�2 − q2 − �2

2�q
sin �(b− a) sin qa

+
�
q

cos�(b− a) sin qa

+
�
�

sin �(b−a) cos qa+cos�(b−a) cos qa:

(3)

The energy intervals, where the absolute value of the 29
right-hand side of Eq. (3) does not exceed unity, cor-
respond to allowed subbands of our superlattice. Un- 31
fortunately, no analytic solution for the wave function
coeEcients in Eq. (2) can be obtained at arbitrary k, 33
so further spectrum calculations were performed nu-
merically. 35

3. Spectrum, wave functions and momentum
matrix element 37

Fig. 2 depicts the envelope wave functions of sev-
eral adjacent subbands. The lower plot represents a 39
wave function belonging to the lowest subband; this
band originates from the well’s ground state. Natu- 41
rally, electronic density concentrates within the well’s
limits. The shape of the wave functions within the well 43
practically does not depend on k; only the phase shift
between adjacent cells changes with k. 45

The rest of the wave functions in Fig. 2 corresponds
to positive energy values. Most of these have elec- 47
tronic density concentrated just outside the wells. We
can roughly infer that these functions originate from 49
electronic states residing over the barriers. The addi-
tional 	-barriers, surrounding the wells, prevent the 51
particles from entering the latter.

Note that the functions on the edges of each subband 53
have de<nite parity when viewed from both well cen-
tre or barrier centre, in agreement with general rules 55
established in Ref. [12] for wave functions in periodic
structures with symmetric potential. The wave func- 57
tions on the edges of the ground subband are both even
about the well centre, but when viewed from the bar- 59
rier centre, the k = 0 function is even and the k = �=b
one is odd. This can be easily understood in full 61
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Fig. 2. The subband structure of the superlattice for b=a= 4,
V = 1:47 and �= 8. The energy unit is ˜2=ma2. The subband
edges are marked by horizontal dotted lines. Solid curves represent
the envelope functions at the band edges, of which the states
with k = 0 are marked with rhombuses. Two thick solid curves
represent the functions of the ‘resonant’ subband. In this subband,
electron density resides mainly within the wells, and both subband
edge states are odd about the well centre. The unit cell potential
is shown below.

analogy to the tight-binding model [13] with the low-1
est electron states in the wells taken as a basis. On the
contrary, in most higher subbands both wave func-3
tions on the band edges have the same parity about
the barrier centre and diBerent parities about the well5
centre. This is because they are made up mainly of
the electron states that reside over the barriers as ex-7
plained above. For de<niteness, further on we speak
of parity about the well centre.9

However, there is an excited subband, with energy
close to the resonant value in the wells, with prop-11
erties that resemble the ground subband. Let us call
this subband resonant. Here electron density is large13
within the well limits, and the envelope functions have
the same parity on the band edges. Their structure re-15
sembles the structure of the functions in the lowest
subband, which originated from the localised states in17
the wells. Similarly, the resonant band is built from
the quasi-localised electron states between the addi-19
tional barriers. The quasi-localised states are mainly
concentrated within the wells, so the structure of the21

corresponding resonant subband is much like that of
the ground subband. 23

Henceforth, we can expect the dipole matrix ele-
ment of the optical transition between these two bands, 25
ground and resonant, to be anomalously large, because
of high overlap between the wave functions in the 27
two bands. Then the absorption coeEcient would also
increase. The energy of corresponding transitions in 29
common superlattices lies in the infrared range.

In our calculations, we used |pn(k)|2, the momen- 31
tum matrix element squared, as a convenient straight-
forward parameter, characterising the absorption per 33
one electron in the ground subband (see Section 4).
|pn(k)|2 is the matrix element between wave functions 35
in the lowest and nth subbands taken at one Bloch vec-
tor value k (because of negligible photon’s momen- 37
tum, we can consider the electron transitions vertical).
The derivative parameters, such as absorption proba- 39
bility or absorption coeEcient �, are proportional to
|pn(k)|2. 41

Figs. 3 and 4 depict the dependence of |pn|2 on
the energy of the <nal electron state at two diBerent 43
values of superlattice period. The variation of other
superlattice parameters (a, �, V ) does not change the 45
qualitative picture. We can see <rst that the transition
matrix element goes up in a number of subbands in the 47
area of resonance. Secondly, absorption is maximum
at one edge and drops almost to zero at another edge 49
of the subband. This is true for all subbands except
the resonant. While before the resonance absorption 51

Fig. 3. The momentum matrix element squared for the same
system as in Fig. 2. Absorption in subbands preceding the resonant
subband drops from the lower edge to the higher. When the
resonant band is passed, the picture reverses. The energy unit is
˜2=(ma2), and the matrix element squared is measured in ˜2=a2.
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Fig. 4. The same dependence as in Fig. 3, but for thicker main
barriers: b=a= 10. The well depth V = 1:47. Full squares show the
ratio of 〈|pn|2〉=(En−En−1), that is, the averaged over an energy
interval matrix element squared, for the superlattice. Smooth curve
represents the product of square of the momentum operator matrix
element by the density of <nal states, |pif |2�, in a single quantum
well according to [6].

monotonously goes down from the lower edge to the1
upper, after the resonance the picture become reversed.
Matching the picture with Fig. 2, we see that when3
absorption is maximum, the <nal wave function has
‘proper’ parity, i.e. the opposite to the parity of the5
ground state. In the resonant band parity is ‘proper’ on
both band edges, and band absorption spectrum has7
diBerent shape.

The picture reOects the hybrid structure of the elec-9
tronic spectrum of the considered superlattice. In the
given con<guration, where main barriers are thicker11
than wells, the excited subband spectrum is formed
mainly by barrier levels. An ‘intrusion’ of the resonant13
level from the well confuses the monotonous pattern
and upturns parity switching order.15

As the interwell distance increases, the transition
matrix elements drop down but simultaneously the17
density of subbands per energy interval increases so
that if one considers the absorption averaged over an19
energy interval containing many bands

�(!)P˜! ∼ ∑
n∈P˜!

〈|pn|2〉;

then this quantity varies only weakly. Here 〈|pn|2〉 is21
the transition matrix element averaged over all states
in the nth subband, and summation goes over all sub-23
bands that enter the P˜!-wide interval of <nal en-
ergies. Remember that the number of single-particle25
states in a subband is determined only by the number
of the superlattice periods, and not by the band width.27

Fig. 5. The change of |pn|2 for the system of Fig. 4 under variation
of V , the well depth: (a) V = 1:33, (b) 1.433, (c) 1.47, (d) 1.52.

It is interesting to observe the superlattice energy
spectrum and absorption variations over the parame- 29
ter region where the resonant state leaves one subband
and enters another. Fig. 5 illustrates this process at 31
the variation of the well depth. One can see how the
absorption peak moves from one subband to another 33
and follow the corresponding changes of the absorp-
tion band shapes: the property to be ‘resonant’ goes 35
from the subband to its neighbour.

4. Absorption strength 37

Using the momentum matrix element data shown
above one can easily calculate such physical quantity 39
of interest as the absorption probability due to an elec-
tron transition from the ground subband to a higher 41
subband n. The standard perturbative approach for a
transition probability at one photon absorption (see, 43
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for example, [14,15]) gives the absorption probabi-1
lity as

W< =
2�
˜ |Ĥ int

< |2	(�f − �i − ˜!)

=
2�e2

m2c2˜A
2
0 |p<|2	(�f − �i − ˜!)

=
(

2�e
m

)2 N (!)
!c

|p<|2	(�f − �i − ˜!)

=
(

2�e
m

)2 I(!)
˜!2c

|p<|2	(�f − �i − ˜!); (4)

where subscripts i, f stand for initial and <nal state,3
respectively;

Ĥ
int

= − e
mc

Ap̂

is the interaction Hamiltonian with electromagnetic5
<eld, A being the vector potential of the latter with the
amplitude A0(!), and p̂ being the electron momentum7
operator; the photon Oux density N (!) satis<es the
relation A2

0(!) = (2�˜c=!)N (!); I(!) =˜!N (!) is9
the radiation spectral intensity. It was assumed in Eq.
(4) that the superlattice length is small as compared11
with the radiation wavelength, which seems reason-
able for the infrared intraband transitions we consid-13
ered here.

On the other hand, as the superlattice we consider15
is not too long, we will assume that each subband
Bloch level can be spectrally resolved separately from17
the others. Assuming also that the light beam spec-
tral width covers only one possible transition from a19
Bloch state in the ground subband into another Bloch
state in an excited subband, after the integration over21
the incident radiation frequency one obtains, taking
into account also the initial and <nal electron state de-23
generacy due to the perpendicular (in-plane) electron
motion 1 .25

W (!<) = 2
∑
ky;kz

P

(
2�e
m

)2 I(!<)
˜2!2

<c
|p<|2; (5)

where !< = (�f −�i)=˜ is the transition frequency, and
P is the statistical factor describing the electron Fermi27

1 The degeneracy is connected with the neglect of the electron
eBective mass diBerence in the layers of the superlattice. As a
result, in-plane energy dispersion laws are similar in all subbands.
This is true for doped superlattices, and for compositional ones
this is an approximation.

Fig. 6. Light absorption probability vs photon energy for the
system of Fig. 3. Each point corresponds to a transition between
two Bloch electron states, one in the ground subband, the other in
an excited one. The line is a guide for the eye. The energy unit
is ˜2=(ma2), the probability is in arbitrary units.

distribution in the ground subband. The electron mo-
mentum conservation at an optical transition has been 29
taken into account in this equation. Factor 2 reOects
the spin degeneracy. 31

Performing the elementary summation in Eq. (5),
one comes <nally to the expression for the light ab- 33
sorption probability at the electron transition between
two Bloch subband states, one in the ground subband 35
and the other in an excited one.

W (!<) =
2�
c

(
e

˜2!<m

)2

I(!<)p2
F⊥ |px|2

=
(

2�e
˜!<m

)2 I(!<)
c

N2d |px|2; (6)

where pF⊥ is the 2D in-plane Fermi momentum of 37
electrons in the ground subband; N2D is the corre-
sponding sheet electron density in a layer of the super- 39
lattice; the light beam is directed along the superlat-
tice layers with its polarisation parallel to the growth 41
axis x to ensure maximum absorption.

Formula (6) gives the connection between the ab- 43
sorption strength and |pz|2 and clearly shows that the
absorption strength reOects all the peculiarities of the 45
matrix element discussed above (see Fig. 6). Other
physical quantities such as the cross-section of the 47
photon absorption, absorption coeEcient, etc., can be
calculated similarly [6].
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5. Comparison with properties of a single well

An analytic calculations have been performed in
Ref. [6] for a single well heterostructure with the same3
model potential as in Eq. (1). One could expect that
the current results should <t to the conclusions of Ref.5
[6] in the limit of remote wells, i.e. for a long-period
superlattice with b=a�1.7

We can employ |pn|2� as a variable characterising
optical absorption per one electron in a single quan-9
tum well, where |pn|2 is the momentum matrix ele-
ment squared, and � is the density of <nal states. An11
analogous parameter for a superlattice is 〈|pn|2〉=(En−
En−1), where 〈: : :〉 stands again for the averaging over13
the states in nth subband, and En is the energy of the
middle state in the subband (when kb= �=2). Thus15
(En − En−1) is approximately the distance between
adjacent bands. This parameter characterises the ab-17
sorption in the area of nth subband, averaged over an
energy interval. As it is evident from Fig. 4, the two19
variables coincide reasonably well already at b=a= 10.

6. Conclusion

We considered a superlattice with a unit cell al-
lowing for resonant states. In this system, the dipole23
matrix element of the transitions between the lowest
subband and one of the excited subbands signi<cantly25
increases when the <nal subband approaches the en-
ergy of the resonant state, peaking up in the resonant27
subband. However, transitions to all subbands except
the resonant one have a zero matrix element at one of29
the subband edges. The intraband absorption strength
will demonstrate similar behaviour. The shape of31
the absorption peak corresponding to the reso-
nant subband is strongly aBected by the ‘intrusion’33

of the quasi-localised states into the superlattice 35
spectrum.
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